Skip to main content
Log in

pH-dependent structural change of reduced spinach plastocyanin studied by perturbed angular correlation of γ-rays and dynamic light scattering

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In this study the pH-dependent structural changes of reduced spinach plastocyanin were investigated using perturbed angular correlation (PAC) of γ-rays and dynamic light scattering (DLS). PAC data of Ag-substituted plastocyanin indicated that the coordinating ligands are two histidine residues (His37, His87) and a cysteine residue (Cys84) in a planar configuration, whereas the methionine (Met92) found perpendicular to this plane is not a coordinating ligand at neutral pH. Two slightly different conformations with differences in the Cys–metal ion–His angles could be observed with PAC spectroscopy. At pH 5.3 a third coordination geometry appears which can be explained as the absence of the His87 residue and the coordination of Met92 as a ligand. With DLS the aggregation of reduced plastocyanin could be observed below pH 5.3, indicating that not only the metal binding site but also the aggregation properties of the protein change upon pH reduction. Both the structural changes at the metal binding site and the aggregation are shown to be reversible. These results support the hypothesis that the pH of the thylakoid lumen has to remain moderate during steady-state photosynthesis and indicate that low pH induced aggregation of plastocyanin might serve as a regulatory switch for photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DLS:

Dynamic light scattering

EFG:

Electric field gradient

Hepes:

N-(2-Hydroxyethyl)piperazine-N′-ethanesulfonic acid

NQI:

Nuclear quadrupole interaction

PAC:

Perturbed angular correlation

Pc:

Plastocyanin

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Gross EL (1993) Photosynth Res 37:103–116

    Article  CAS  Google Scholar 

  2. Sigfridsson K (1998) Photosynth Res 57:1–28

    Article  CAS  Google Scholar 

  3. Inoue T, Sugawara H, Hamanaka S, Tsukui H, Suzuki E, Kohzuma T, Kai Y (1999) Biochemistry 38:6063–6069

    Article  PubMed  CAS  Google Scholar 

  4. Kohzuma T, Inoue T, Yoshizaki F, Sasakawa Y, Onodera K, Nagatomo S, Kitagawa T, Uzawa S, Isobe Y, Sugimura Y, Gotowda M, Kai Y (1999) J Biol Chem 274:11817–11823

    Article  PubMed  CAS  Google Scholar 

  5. Bond CS, Bendall DS, Freeman HC, Guss JM, Howe CJ, Wagner MJ, Wilce MCJ (1999) Acta Crystallogr D 55:414–421

    Article  PubMed  CAS  Google Scholar 

  6. Xue YF, Okvist M, Hansson O, Young S (1998) Protein Sci 7:2099–2105

    Article  PubMed  CAS  Google Scholar 

  7. Badsberg U, Jorgensen AMM, Gesmar H, Led JJ, Hammerstad JM, Jespersen LL, Ulstrup J (1996) Biochemistry 35:7021–7031

    Article  PubMed  CAS  Google Scholar 

  8. Bagby S, Driscoll PC, Harvey TS, Hill HAO (1994) Biochemistry 33:6611–6622

    Article  PubMed  CAS  Google Scholar 

  9. Moore JM, Lepre CA, Gippert GP, Chazin WJ, Case DA, Wright PE (1991) J Mol Biol 221:533–555

    Article  PubMed  CAS  Google Scholar 

  10. Guss JM, Harrowell PR, Murata M, Norris VA, Freeman HC (1986) J Mol Biol 192:361–387

    Article  PubMed  CAS  Google Scholar 

  11. Danielsen E, Bauer R, Hemmingsen L, Andersen ML, Bjerrum MJ, Butz T, Tröger W, Canters GW, Hoitink CWG, Karlsson G, Hansson O, Messerschmidt A (1995) J Biol Chem 270:573–580

    Article  PubMed  CAS  Google Scholar 

  12. Danielsen E, Scheller HV, Bauer R, Hemmingsen L, Bjerrum MJ, Hansson O (1999) Biochemistry 38:11531–11540

    Article  PubMed  CAS  Google Scholar 

  13. Segal MG, Sykes AG (1978) J Am Chem Soc 100:4585–4592

    Article  CAS  Google Scholar 

  14. Vakoufari E, Wilson KS, Petratos K (1994) FEBS Lett 347:203–206

    Article  PubMed  CAS  Google Scholar 

  15. Zhu ZY, Cunane LM, Chen ZW, Durley RCE, Mathews FS, Davidson VL (1998) Biochemistry 37:17128–17136

    Article  PubMed  CAS  Google Scholar 

  16. Wu Q, Li FB, Wang WX, Hecht MH, Spiro TG (2002) J Inorg Biochem 88:381–387

    Article  PubMed  CAS  Google Scholar 

  17. Lommen A, Canters GW, Vanbeeumen J (1988) Eur J Biochem 176:213–223

    Article  PubMed  CAS  Google Scholar 

  18. Dennison C, Kohzuma T, McFarlane W, Suzuki S, Sykes AG (1994) Inorg Chem 33:3299–3305

    Article  CAS  Google Scholar 

  19. Sinclairday JD, Sisley MJ, Sykes AG, King GC, Wright PE (1985) J Chem Soc Chem Commun 505–507

  20. Inoue T, Gotowda M, Sugawara H, Kohzuma T, Yoshizaki F, Sugimura Y, Kai Y (1999) Biochemistry 38:13853–13861

    Article  PubMed  CAS  Google Scholar 

  21. Kramer DM, Sacksteder CA, Cruz JA (1999) Photosynth Res 60:151–163

    Article  CAS  Google Scholar 

  22. Ellefson W, Ulrich E, Krogmann DW (1980) Methods Enzymol 69:223–228

    CAS  Google Scholar 

  23. Bauer R, Hansen M, Hansen S, Ogendal L, Lomholt S, Qvist K, Harne D (1995) J Chem Phys 103:2725–2737

    Article  CAS  Google Scholar 

  24. Bauer R, Danielsen E, Hemmingsen L, Bjerrum MJ, Hansson O, Singh K (1997) J Am Chem Soc 119:157–162

    Article  CAS  Google Scholar 

  25. Frauenfelder H, Steffen RM (1965) In: Siegbahn K (ed) Angular correlations. North Holland, Amsterdam, pp 997–1198

  26. Hemmingsen L, Sas KN, Danielsen E (2004) Chem Rev 104:4027–4061

    Article  PubMed  CAS  Google Scholar 

  27. Butz T (1989) Hyperfine Interact 52:189–228

    Article  CAS  Google Scholar 

  28. Butz T (1992) Correct Hyperfine Interact 73:387–388

    Article  Google Scholar 

  29. Danielsen E, Bauer R (1990) Hyperfine Interact 62:311–324

    Article  CAS  Google Scholar 

  30. Perrin F (1934) J Phys Radium 5:497–511

    Article  CAS  Google Scholar 

  31. Bauer R, Jensen SJ, Schmidt-Nielsen B (1988) Hyperfine Interact 39:203–234

    Article  CAS  Google Scholar 

  32. Danielsen E, Bauer R, Hemmingsen L, Bjerrum MJ, Butz T, Troger W, Canters GW, Denblaauwen T, Vanpouderoyen G (1995) Eur J Biochem 233:554–560

    Article  PubMed  CAS  Google Scholar 

  33. Tröger W, Lippert C, Butz T, Sigfridsson K, Hansson O, McLaughlin E, Bauer R, Danielsen E, Hemmingsen L, Bjerrum MJ (1996) Z Naturforsch A 51:431–436

    Google Scholar 

  34. King RB (ed) (2005) Encyclopedia of inorganic chemistry. Wiley, Amsterdam

  35. Hunter DM, McFarlane W, Sykes AG, Dennison C (2001) Inorg Chem 40:354–360

    Article  PubMed  CAS  Google Scholar 

  36. Guss JM, Freeman HC (1983) J Mol Biol 169:521–563

    Article  PubMed  CAS  Google Scholar 

  37. Taneva SG, Donchev AA, Dimitrov MI, Muga A (2000) Biochim Biophys Acta 1463:429–438

    Article  PubMed  CAS  Google Scholar 

  38. Buchi FN, Bond AM, Codd R, Huq LN, Freeman HC (1992) Inorg Chem 31:5007–5014

    Article  Google Scholar 

  39. Sykes AG (1991) Struct Bonding 75:175–224

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Henrik Vibe Scheller for useful discussions and Marianne Lund Jensen for technical assistance. The project was supported by the Danish Technical Research Council (9901473) and the EU Research Training Network “Transient” (HPRN-CT-1999-00095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klára Nárcisz Sas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sas, K.N., Haldrup, A., Hemmingsen, L. et al. pH-dependent structural change of reduced spinach plastocyanin studied by perturbed angular correlation of γ-rays and dynamic light scattering. J Biol Inorg Chem 11, 409–418 (2006). https://doi.org/10.1007/s00775-006-0085-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0085-x

Keywords

Navigation