Cluster N1 of complex I from Yarrowia lipolytica studied by pulsed EPR spectroscopy

  • T. Maly
  • L. Grgic
  • K. Zwicker
  • V. Zickermann
  • U. Brandt
  • T. PrisnerEmail author
Original Paper


After reduction with nicotinamide adenine dinucleotide (NADH), NADH:ubiquinone oxidoreductase (complex I) of the strictly aerobic yeast Yarrowia lipolytica shows clear signals from five different paramagnetic iron–sulfur (FeS) clusters (N1–N5) which can be detected using electron paramagnetic resonance (EPR) spectroscopy. The ligand environment and the assignment of several FeS clusters to specific binding motifs found in several subunits of the complex are still under debate. In order to characterize the hyperfine interaction of the surrounding nuclei with FeS cluster N1, one- and two-dimensional electron spin echo envelope modulation experiments were performed at a temperature of 30 K. At this temperature only cluster N1 contributes to the overall signal in a pulsed EPR experiment. The hyperfine and quadrupole tensors of a nitrogen nucleus and the isotropic and dipolar hyperfine couplings of two sets of protons could be determined by numerical simulation of the one- and two-dimensional spectra. The values obtained are in perfect agreement with a ferredoxin-like binding structure by four cysteine amino acid residues and allow the assignment of the nitrogen couplings to a backbone nitrogen nucleus and the proton couplings to the β-protons of the bound cysteine residues.


Complex I Iron–sulfur clusters Ferredoxins Electron spin echo envelope modulation Hyperfine sublevel correlation 



This work was supported by the Sonderforschungsbereich SFB 472 “Molecular Bio-energetics.” The authors also want to thank the two anonymous reviewers for their helpful comments and suggestions.


  1. 1.
    Videira A (1998) Biochim Biophys Acta 1364:89–100PubMedCrossRefGoogle Scholar
  2. 2.
    Brandt U, Kerscher S, Dröse S, Zwicker K, Zickermann V (2003) FEBS Lett 545:9–17PubMedCrossRefGoogle Scholar
  3. 3.
    Wikström MKF (1984) FEBS Lett 169:300–304CrossRefPubMedGoogle Scholar
  4. 4.
    Weiss H, Friedrich T (1991) Biochim Biophys Acta 23:743–771Google Scholar
  5. 5.
    Shapira AH (1998) Biochim Biophys Acta 1364:261–270PubMedCrossRefGoogle Scholar
  6. 6.
    Hirst J, Carroll J, Fearnley IM, Shannon J, Walker JE (2003) Biochim Biophys Acta 1604:135–150PubMedCrossRefGoogle Scholar
  7. 7.
    Yagi T, Yano S, Di Bernado S, Matsuno-Yagi A (1998) Biochim Biophys Acta 1354:125–133Google Scholar
  8. 8.
    Yano T, Ohnishi T (2001) J Bioenerg Biomemb 33:213–222CrossRefGoogle Scholar
  9. 9.
    van Belzen R, Kotlyar AB, Moon N, Dunham WR, Albracht SPJ (1997) Biochemistry 36:886–893CrossRefPubMedGoogle Scholar
  10. 10.
    Ohnishi T (1998) Biochim Biophys Acta 1364:186–206PubMedCrossRefGoogle Scholar
  11. 11.
    Rasmussen T, Scheide D, Brors B, Kintscher L, Weiss H, Friedrich T (2001) Biochemistry 40:6124–6131CrossRefPubMedGoogle Scholar
  12. 12.
    Nakamaru-Ogiso E, Yano T, Yagi T, Ohnishi O (2005) J Biol Chem 280:301–307PubMedGoogle Scholar
  13. 13.
    Hinchliffe P, Sazanov LA (2005) Science 309:771–774CrossRefPubMedGoogle Scholar
  14. 14.
    Yano T (2003) J Biol Chem 278:15514–15522CrossRefPubMedGoogle Scholar
  15. 15.
    Waletko A, Zwicker K, Abdrakhmanova A, Zickermann V, Brandt U, Kerscher S (2005) J Biol Chem 280:5622–5625CrossRefPubMedGoogle Scholar
  16. 16.
    Maly T, MacMillan F, Zwicker K, Kashani-Poor N, Brandt U, Prisner T (2004) Biochemistry 43:3969–3978CrossRefPubMedGoogle Scholar
  17. 17.
    Maly T, Prisner T (2004) J Magn Reson 170:88–96CrossRefPubMedGoogle Scholar
  18. 18.
    Deligiannakis Y, Louloudi M, Hadjiliadis N (2000) Coord Chem Rev 204:1–112CrossRefGoogle Scholar
  19. 19.
    Kerscher S, Dröse S, Zwicker K, Zickermann V, Brandt U (2002) Biochim Biophys Acta 1555:83–91PubMedCrossRefGoogle Scholar
  20. 20.
    Dröse S, Zwicker K, Brandt U (2002) Biochim Biophys Acta 1556:65–72PubMedCrossRefGoogle Scholar
  21. 21.
    Kashani-Poor N, Kerscher S, Zickermann V, Brandt U (2001) Biochim Biophys Acta 1504:363–370PubMedCrossRefGoogle Scholar
  22. 22.
    Djafarzadeh R, Kerscher S, Zwicker K, Rademacher M, Lindahl M, Schägger H, Brandt U (2000) Biochim Biophys Acta 1459:230–238PubMedCrossRefGoogle Scholar
  23. 23.
    Mims WB (1972) Phys Rev B 5:2409–2419CrossRefGoogle Scholar
  24. 24.
    Höfer P, Grupp A, Nebenführ H, Mehring M (1986) Chem Phys Lett 132:279–282CrossRefGoogle Scholar
  25. 25.
    Gemperle C, Aebli G, Schweiger A, Ernst RR (1990) J Magn Reson 88:241–256Google Scholar
  26. 26.
    Bowman MK, Massoth RJ (1987) In: Weil JA (ed) Electron magnetic resonance of the solid state. The Canadian Society for Chemistry, Ottawa, pp 99–110Google Scholar
  27. 27.
    Wang D-C, Meinhardt SW, Sackmann H, Weiss H, Ohnishi T (1991) Eu J Biochem 197:257–264CrossRefGoogle Scholar
  28. 28.
    Mouesca J-M, Lamotte B (1998) Coord Chem Rev 178–180:1573–1614CrossRefGoogle Scholar
  29. 29.
    Noodelman L, Lovell T, Liu T, Himo F, Torres RA (2002) Curr Opin Chem Biol 6:259–273CrossRefPubMedGoogle Scholar
  30. 30.
    Dikanov SA, Xun L, Karpiel AB, Tyryshkin AM, Bowman MK (1996) J Am Chem Soc 118:8408–8416CrossRefGoogle Scholar
  31. 31.
    Gurbiel RJ, Batie CJ, Sivaraja M, True AE, Fee JA, Hoffmann BM, Ballou DP (1989) Biochemistry 28:4861–4871CrossRefPubMedGoogle Scholar
  32. 32.
    Gurbiel RJ, Ohnishi T, Robertson DE, Daldal F, Hoffmann BM (1991) Biochemistry 30:11579–11584CrossRefPubMedGoogle Scholar
  33. 33.
    Britt RD, Sauer K, Klein MP, Knaff DB, Kriauciunas A, Yu CA, Yu L, Malkin R (1991) Biochemistry 30:1892–1901CrossRefPubMedGoogle Scholar
  34. 34.
    Shergill JK, Cammack R (1994) Biochim Biophys Acta 1185:43–49PubMedCrossRefGoogle Scholar
  35. 35.
    Dikanov SA, Bowman MK (1995) J Magn Reson A 116:125–128CrossRefGoogle Scholar
  36. 36.
    Dikanov SA, Tyryshkin AM, Bowman MK (2000) J Magn Reson 144:228–242CrossRefPubMedGoogle Scholar
  37. 37.
    Dikanov SA, Bowman MK (1998) J Biol Inorg Chem 3:18–29CrossRefGoogle Scholar
  38. 38.
    Mouesca J-M, Rius G, Lamotte B (1993) J Am Chem Soc 115:4714–4731CrossRefGoogle Scholar
  39. 39.
    Canne C, Ebelshäuser M, Gay E, Shergill JK, Cammack R, Kappl R, Hütermann J (2000) J Biol Inorg Chem 5:514–526CrossRefPubMedGoogle Scholar
  40. 40.
    Kappl R, Ciurli S, Luchinat C, Hütermann J (1999) J Am Chem Soc 121:1925–1935CrossRefGoogle Scholar
  41. 41.
    Riedel A, Fetzner S, Rampp M, Lingens F, Liebl U, Zimmermann J-L, Nitschke W (1995) J Biol Chem 270:30869–30873CrossRefPubMedGoogle Scholar
  42. 42.
    Shergill JK, Joannou CL, Mason JR, Cammack R (1995) Biochemistry 34:16533–16542CrossRefPubMedGoogle Scholar
  43. 43.
    Shergill JK, Golinelli M-P, Cammack R, Meyer J (1996) Biochemistry 35:12842–12848CrossRefPubMedGoogle Scholar
  44. 44.
    Cammack R, Chapman A, McCracken J, Peisach J (1991) J Chem Soc Faraday Trans 87:3203–3206CrossRefGoogle Scholar
  45. 45.
    Dikanov SA, Tyryshkin AM, Felli I, Reijerse EJ, Hütermann J (1995) J Magn Reson 108:99–102CrossRefGoogle Scholar

Copyright information

© SBIC 2006

Authors and Affiliations

  • T. Maly
    • 1
    • 3
  • L. Grgic
    • 2
  • K. Zwicker
    • 2
  • V. Zickermann
    • 2
  • U. Brandt
    • 2
  • T. Prisner
    • 1
    Email author
  1. 1.Institut für Physikalische und Theoretische Chemie and Center for Biological Magnetic ResonanceJohann-Wolfgang-Goethe-Universität FrankfurtFrankfurt am MainGermany
  2. 2.Zentrum der Biologischen ChemieUniversitätsklinikum FrankfurtFrankfurt am MainGermany
  3. 3.Francis Bitter Magnet Laboratory and Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations