Skip to main content
Log in

Crosstalk between metal ions in Bacillus subtilis ferrochelatase

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Ferrochelatase (EC 4.99.1.1), the terminal enzyme in the heme biosynthetic pathway, catalyzes the insertion of Fe2+ into protoporphyrin IX, generating heme. In vitro assays have shown that all characterized ferrochelatases can also incorporate Zn2+ into protoporphyrin IX. Previously Zn2+ has been observed at an inner metal binding site close to the porphyrin binding site. Mg2+, which stimulates Zn2+ insertion by Bacillus subtilis ferrochelatase, has been observed at an outer metal binding site. Exchange of Glu272 to a serine eliminated the stimulative effect of Mg2+. We found that Zn2+ quenched the fluorescence of B. subtilis ferrochelatase and this quenching was used to estimate the metal affinity. Trp230 was identified as the intrinsic fluorophore responsible for the observed quenching pattern. The affinity for Zn2+ could be increased by incubating the ferrochelatase with the transition state analogue N-methyl mesoporphyrin IX, which reflected a close collaborative arrangement between the two substrates in the active site. We also showed that the affinity for Zn2+ was lowered in the presence of Mg2+ and that bound Zn2+ was released upon binding of Mg2+. In the ferrochelatase with a Glu272Ser modification, the interaction between Zn2+ and Mg2+ was abolished. It could thereby be demonstrated that the presence of a metal at one metal binding site affected the metal affinity of another, providing the enzyme with a site that regulates the enzymatic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kaim W, Schwederski B (1994) Bioinorganic chemistry: inorganic elements in the chemistry of life: an introduction and guide. Wiley, Chichester

    Google Scholar 

  2. Dailey HA, Dailey TA (2003) In: Kadish KM, Smith KM, Guilard R (eds) Porphyrin handbook: the iron and cobalt pigments: biosynthesis, structure and degradation. Academic, San Diego, pp 93–122

  3. Badminton MN, Elder GH (2005) J Inherit Metab Dis 28:277–286

    Article  PubMed  CAS  Google Scholar 

  4. Camadro JM, Ibraham NG, Levere RD (1984) J Biol Chem 259:5678–5682

    PubMed  CAS  Google Scholar 

  5. Al-Karadaghi S, Hansson M, Nikonov S, Jönsson B, Hederstedt L (1997) Structure 5:1501–1510

    Article  PubMed  CAS  Google Scholar 

  6. Wu CK, Dailey HA, Rose JP, Burden A, Sellers VM, Wang BC (2001) Nat Struct Biol 8:156–160

    Article  PubMed  CAS  Google Scholar 

  7. Karlberg T, Lecerof D, Gora M, Silvegren G, Labbe-Bois R, Hansson M, Al-Karadaghi S (2002) Biochemistry 41:13499–13506

    Article  PubMed  CAS  Google Scholar 

  8. Schubert HL, Raux E, Wilson KS, Warren MJ (1999) Biochemistry 38:10660–10669

    Article  PubMed  CAS  Google Scholar 

  9. Lecerof D, Fodje M, Hansson A, Hansson M, Al-Karadaghi S (2000) J Mol Biol 297:221–232

    Article  PubMed  CAS  Google Scholar 

  10. Blackwood ME Jr, Rush TS III, Medlock AE, Dailey HA, Spiro TG (1997) J Am Chem Soc 119:12170–12174

    Article  CAS  Google Scholar 

  11. Blackwood ME Jr, Rush TS III, Romesberg F, Schultz PG, Spiro TG (1998) Biochemistry 37:779–782

    Article  PubMed  CAS  Google Scholar 

  12. Franco R, Ma JG, Lu Y, Ferreira GC, Shelnutt JA (2000) Biochemistry 39:2517–2529

    Article  PubMed  CAS  Google Scholar 

  13. Lu Y, Sousa A, Franco R, Mangravita A, Ferreira GC, Moura I, Shelnutt JA (2002) Biochemistry 41:8253–8262

    Article  PubMed  CAS  Google Scholar 

  14. Cochran AG, Schultz PG (1990) Science 249:781–783

    Article  PubMed  CAS  Google Scholar 

  15. Conn MM, Prudent JR, Schultz PG (1996) J Am Chem Soc 118:7012–7013

    Article  CAS  Google Scholar 

  16. Li Y, Sen D (1996) Nat Struct Biol 3:743–747

    Article  PubMed  CAS  Google Scholar 

  17. Lecerof D, Fodje MN, Alvarez León R, Olsson U, Hansson A, Sigfridsson E, Ryde U, Hansson M, Al-Karadaghi S (2003) J Biol Inorg Chem 8:452–458

    PubMed  CAS  Google Scholar 

  18. Hansson M, Al-Karadaghi S (1995) Proteins 23:607–609

    Article  PubMed  CAS  Google Scholar 

  19. Fodje MN, Al-Karadaghi S (2002) Protein Eng 15:353–358

    Article  PubMed  CAS  Google Scholar 

  20. Hansson M, Hederstedt L (1994) Eur J Biochem 220:201–208

    Article  PubMed  CAS  Google Scholar 

  21. Studier FW, Moffatt BA (1986) J Mol Biol 189:113–130

    Article  PubMed  CAS  Google Scholar 

  22. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3 edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  23. Fling SP, Gregerson DS (1986) Anal Biochem 155:83–88

    Article  PubMed  CAS  Google Scholar 

  24. Schägger H, von Jagow G (1987) Anal Biochem 166:368–379

    Article  PubMed  Google Scholar 

  25. Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Electrophoresis 9:255–262

    Article  PubMed  CAS  Google Scholar 

  26. GraphPad Prism 4 (2003) GraphPad Software, San Diego

  27. Dailey HA, Fleming JE (1983) J Biol Chem 258:11453–11459

    PubMed  CAS  Google Scholar 

  28. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer/Plenum, New York

    Google Scholar 

  29. Lusk JE, Williams RJ, Kennedy EP (1968) J Biol Chem 243:2618–2624

    PubMed  CAS  Google Scholar 

  30. Moncany ML, Kellenberger E (1981) Experientia 37:846–847

    Article  PubMed  CAS  Google Scholar 

  31. Silva JJRFd, Williams RJP (2001) The biological chemistry of the elements: the inorganic chemistry of life, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  32. Porath J, Carlsson J, Olsson I, Belfrage G (1975) Nature 258:598–599

    Article  PubMed  CAS  Google Scholar 

  33. Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean RA, Gerstein M, Snyder M (2001) Science 293:2101–2105

    Article  PubMed  CAS  Google Scholar 

  34. Shen Y, Ryde U (2005) Chem Eur J 11:1549–1564

    Article  CAS  Google Scholar 

  35. DeLano WL (2004) Open-source PyMOL. DeLano Scientific LLC, San Carlos

    Google Scholar 

Download references

Acknowledgements

This work was supported by The Crafoord Foundation and The Swedish Research Council. We thank Salam Al-Karadaghi, Tobias Karlberg, Simon Gough and Nickolche Sirijovski for fruitful insights and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattias D. Hansson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansson, M.D., Lindstam, M. & Hansson, M. Crosstalk between metal ions in Bacillus subtilis ferrochelatase. J Biol Inorg Chem 11, 325–333 (2006). https://doi.org/10.1007/s00775-006-0080-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0080-2

Keywords

Navigation