Skip to main content
Log in

Computational study on the difference between the Co–C bond dissociation energy in methylcobalamin and adenosylcobalamin

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The bond dissociation energies of the Co–C bonds in the cobalamin cofactors methylcobalamin and adenosylcobalamin were calculated using the hybrid quantum mechanics/molecular mechanics method IMOMM (integrated molecular orbital and molecular mechanics). Calculations were performed on models of differing complexities as well as on the full systems. We investigated the origin of the different experimental values for the Co–C bond dissociation energies in methylcobalamin and adenosylcobalamin, and have provided an explanation for the difficulties encountered when we attempt to reproduce this difference in quantum chemistry. Additional calculations have been performed using the Miertus–Scrocco–Tomasi method in order to estimate the influence of solvent effects on the homolytic Co–C bond cleavage. Introduction of these solvation effects is shown to be necessary for the correct reproduction of experimental trends in bond dissociation energies in solution, which consequently have no direct correlation with dissociation processes in the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kräutler B, Arigoni D, Golding BT (1998) Vitamin B12 and B12-proteins. Wiley-VCH, Weinheim

    Google Scholar 

  2. Banerjee R (ed) (1999) Chemistry and biochemistry of B12. Marcel Dekker, New York

  3. Matthews RG (2001) Acc Chem Res 34:681–689

    PubMed  CAS  Google Scholar 

  4. Buckel W, Golding BT (1996) Chem Soc Rev 26:329–337

    Google Scholar 

  5. Banerjee R (2003) Chem Rev 103:2083–2094

    PubMed  CAS  Google Scholar 

  6. Toraya T (2003) Chem Rev 103:2095–2127

    PubMed  CAS  Google Scholar 

  7. Finke RG, Hay BP (1984) Inorg Chem 23:3041–3043

    CAS  Google Scholar 

  8. Halpern J, Kim SH, Leung TW (1984) J Am Chem Soc 106:8317–8319

    CAS  Google Scholar 

  9. Hay BP, Finke RG (1986) J Am Chem Soc 108:4820–4829

    CAS  Google Scholar 

  10. Hay BP, Finke RG (1988) Polyhedron 7:1469–1988

    CAS  Google Scholar 

  11. Garr CD, Finke RG (1993) Inorg Chem 32:4414–4421

    CAS  Google Scholar 

  12. Lott WB, Chagovetz AM, Grissom CB (1995) J Am Chem Soc 117:12194–12201

    CAS  Google Scholar 

  13. Yoder LM, Cole AG, Walker LA II, Sension RJ (2001) J Phys Chem B 105:12180–12188

    CAS  Google Scholar 

  14. Cole AG, Yoder LM, Shiang JJ, Anderson NA, Walker LA II, Barnaszak Holl MM, Sension RJ (2002) J Am Chem Soc 124:434–441

    PubMed  CAS  Google Scholar 

  15. Endicott JF, Balakrishnan KP, Wong ChL (1980) J Am Chem Soc 102:5519–5526

    CAS  Google Scholar 

  16. Martin BD, Finke RG (1990) J Am Chem Soc 112:2419–2420

    CAS  Google Scholar 

  17. Martin BD, Finke RG (1992) J Am Chem Soc 114:585–592

    CAS  Google Scholar 

  18. Hung RR, Grabowski JJ (1999) J Am Chem Soc 121:1359–1364

    CAS  Google Scholar 

  19. Shiang JJ, Walker LA II, Anderson NA, Cole AG, Sension RJ (1999) J Phys Chem B 103:10532–10539

    CAS  Google Scholar 

  20. Ng FTT, Rempel GL, Halpern J (1982) J Am Chem Soc 104:621–623

    CAS  Google Scholar 

  21. Tsou TT, Loots M, Halpern J (1982) J Am Chem Soc 104:623–624

    CAS  Google Scholar 

  22. Finke RG, Smith BL, Mayer B, Molinero AA (1983) Inorg Chem 22:3679–3681

    Google Scholar 

  23. Bakac A, Espenson JH (1984) J Am Chem Soc 106:5187–5202

    Google Scholar 

  24. Halpern J (1988) Polyhedron 7:1483–1490

    CAS  Google Scholar 

  25. Rossi M, Glusker JP, Randaccio L, Summers MF, Toscano PJ, Marzilli LG (1985) J Am Chem Soc 107:1729–1738

    CAS  Google Scholar 

  26. Savage HFJ, Lindley PF, Finney JL, Timmins PA (1987) Acta Cryst B 43:280–295

    Google Scholar 

  27. Randaccio L, Pahor NB, Zangrando E, Marzilli LG (1989) Chem Soc Rev 18:225–250

    CAS  Google Scholar 

  28. Randaccio L, Furlan M, Geremia S, Šlouf M, Srnova I, Toffoli D (2000) Inorg Chem 39:3403–3413

    PubMed  CAS  Google Scholar 

  29. Ouyang L, Rulis P, Ching WY, Nardin G, Randaccio L (2004) Inorg Chem 43:1235–1241

    PubMed  CAS  Google Scholar 

  30. Torrent M, Musaev DG, Morokuma K, Ke SC, Warncke K (1999) J Phys Chem B 103:8618–8627

    CAS  Google Scholar 

  31. Ke SC, Torrent M, Musaev DG, Morokuma K, Warncke K (1999) Biochemistry 38:12681–12689

    PubMed  CAS  Google Scholar 

  32. Andruniow T, Zgierski MZ, Kozlowski PM (2000) Chem Phys Lett 331:509–512

    ADS  CAS  Google Scholar 

  33. Andruniow T, Zgierski MZ, Kozlowski PM (2000) J Phys Chem B 104:10921–10927

    CAS  Google Scholar 

  34. Kozlowski PM (2001) Curr Opin Chem Biol 5:736–743

    PubMed  CAS  Google Scholar 

  35. Andruniow T, Zgierski MZ, Kozlowski PM (2001) J Am Chem Soc 123:2679–2680

    PubMed  CAS  Google Scholar 

  36. Andruniow T, Zgierski MZ, Kozlowski PM (2002) J Phys Chem A 106:1365–1373

    CAS  Google Scholar 

  37. Freindorf M, Kozlowski PM (2004) J Am Chem Soc 126:1928–1929

    PubMed  CAS  Google Scholar 

  38. Jensen KP, Sauer SPA, Liljefors T, Norrby PO (2001) Organometallics 20:550–556

    CAS  Google Scholar 

  39. Jensen KP, Ryde U (2002) J Mol Struc (Theochem) 585:239–255

    Article  CAS  Google Scholar 

  40. Jensen KP, Ryde U (2003) J Phys Chem A 107:7539–7545

    CAS  Google Scholar 

  41. Rovira C, Kunc K, Hutter J, Parrinello M (2001) Inorg Chem 40:11–17

    PubMed  CAS  Google Scholar 

  42. Dölker N, Maseras F, Lledós A (2001) J Phys Chem B 105:7564–7571

    Google Scholar 

  43. Dölker N, Maseras F, Lledós A (2003) J Phys Chem B 107:306–315

    Google Scholar 

  44. Dölker N, Maseras F, Siegbahn PEM (2004) Chem Phys Lett 386:174–178

    Google Scholar 

  45. Randaccio L, Geremia S, Sterner M, Toffoli D, Zangrando E (2002) Eur J Inorg Chem 1:93–103

    Google Scholar 

  46. Pett VB, Fischer AE, Dudley GK, Zacharias DE (2002) Comm Inorg Chem 23:385–400

    CAS  Google Scholar 

  47. Ouyang L, Randaccio L, Rulis P, Kurmaev EZ, Moewes A, Ching WY (2003) J Mol Struc (Theochem) 622:221–227

    CAS  Google Scholar 

  48. Stich T, Brooks A, Buan N, Brunold T (2003) J Am Chem Soc 125:5897–5914

    PubMed  CAS  Google Scholar 

  49. Stich T, Buan N, Brunold T (2004) J Am Chem Soc 126:9735–9749

    PubMed  CAS  Google Scholar 

  50. Himo F, Siegbahn PEM (2004) Chem Rev 104:459–508

    PubMed  Google Scholar 

  51. Selcuki C, van Eldik R, Clark T (2004) Inorg Chem 43:2828–2833

    PubMed  CAS  Google Scholar 

  52. Pratt DA, van der Donk WA (2005) J Am Chem Soc 127:384–396

    PubMed  CAS  Google Scholar 

  53. Becke AD (1993) J Chem Phys 98:5648–5652

    ADS  CAS  Google Scholar 

  54. Lee C, Yang W, Parr G (1988) Phys Rev B 37:785–789

    ADS  CAS  Google Scholar 

  55. Voityuk AA, Roesch N (2000) J Phys Chem A 104:4089–4094

    CAS  Google Scholar 

  56. Becke AD (1988) Phys Rev A 38:3098–3100

    PubMed  ADS  CAS  Google Scholar 

  57. Perdew JP (1986) Phys Rev B 34:7406

    ADS  Google Scholar 

  58. Perdew JP (1986) Phys Rev B 33:8822–8824

    ADS  Google Scholar 

  59. Rutkowska-Zbik D, Jaworska M, Witko M (2004) Struct Chem 15:431–435

    CAS  Google Scholar 

  60. Maseras F, Morokuma K (1995) J Comput Chem 16:1170–1179

    CAS  Google Scholar 

  61. Kurmaev EZ, Moewes A, Ouyang L, Randaccio L, Rulis P, Ching WY, Bach M, Neumann M (2003) Europhys Lett 62:582–587

    ADS  CAS  Google Scholar 

  62. Rovira C, Biarnés X, Kunc K (2004) Struct Chem 15:431–435

    Google Scholar 

  63. Frisch MJ, Trucks GW, Schlegel HB et al (1998) Gaussian 98, Revision A.9. Gaussian Inc., Pittsburgh, PA

  64. Allinger N, Yuh YH, Lii JH (1989) J Am Chem Soc 111:8551–8566

    CAS  Google Scholar 

  65. Dapprich S, Komaromi I, Byun KS, Morokuma K, Frisch MJ (1999) J Mol Struc (Theochem) 461-462:1–21

    Google Scholar 

  66. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    ADS  CAS  Google Scholar 

  67. Hay PJ, Wadt WR (1985) J Chem Phys 82:284–298

    ADS  Google Scholar 

  68. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    ADS  CAS  Google Scholar 

  69. Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114

    ADS  CAS  Google Scholar 

  70. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724–728

    ADS  CAS  Google Scholar 

  71. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    ADS  CAS  Google Scholar 

  72. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222

    CAS  Google Scholar 

  73. Hariharan PC, Pople JA (1974) Mol Phys 27:209–214

    ADS  CAS  Google Scholar 

  74. Gordon MS (1980) Chem Phys Lett 76:163–168

    ADS  CAS  Google Scholar 

  75. Bachs M, Luque FJ, Orozco M (1994) J Comput Chem 15:446–454

    CAS  Google Scholar 

  76. Curuchet C, Orozco M, Luque FJ (2001) J Comput Chem 22:1180–1193

    Google Scholar 

  77. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129

    CAS  Google Scholar 

  78. Soteras I, Curutchet C, Bidon-Chanal A, Orozco M, Luque FJ (2005) J Mol Struc (Theochem) (in press)

  79. Frisch MJ, Trucks GW, Schlegel HB et al (2003) Gaussian 03. Gaussian Inc., Pittsburgh, PA (modified by Curutchet C, Orozco M, Luque FJ, University of Barcelona, 2004)

Download references

Acknowledgements

We thank Carles Curuchet, Javier Luque and Modesto Orozco for support with the MST model and helpful discussions. Financial support from the Spanish DGES (project no. BQU2002-04110-CO2-02) and the Catalan DURSI (project no. 2001SGR00179) is acknowledged. F.M. is also grateful for the financial support of DURSI and the ICIQ foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Dölker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dölker, N., Morreale, A. & Maseras, F. Computational study on the difference between the Co–C bond dissociation energy in methylcobalamin and adenosylcobalamin. J Biol Inorg Chem 10, 509–517 (2005). https://doi.org/10.1007/s00775-005-0662-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0662-4

Keywords

Navigation