Skip to main content
Log in

Mixed-ligand complexes of ruthenium(II) containing new photoactive or electroactive ligands: synthesis, spectral characterization and DNA interactions

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Mixed-ligand ruthenium(II) complexes of three photoactive ligands, viz., (E)-1-[2-(4-methyl-2-pyridyl)-4-pyridyl]-2-(1-naphthyl)-1-ethene (mppne), (E)-1-(9-anthryl)-2-[2-(4-methyl-2-pyridyl)-4-pyridyl]-1-ethene (mppae) and (E)-1-[2-(4-methyl-2-pyridyl)-4-pyridyl]-2-(1-pyrenyl)-1-ethene (mpppe), in which a 2,2′-bipyridyl unit is linked via an ethylinic linkage to either a naphthalene, an anthracene or a pyrene chromophore and three electroactive ligands, viz., 4-(4-pyridyl)-1,2-benzenediol (catpy), 5,6-dihydroxy-1,10-phenanthroline (catphen) and 1,2-benzenediol (cat), were synthesized in good to moderate yields. Complexes [Ru(bpy)2(mppne)]2+ (bpy is 2, 2′–bipyridyl), [Ru(bpy)2(mppae)]2+, [Ru(bpy)2(mpppe)]2+, [Ru(bpy)2(sq-py)]+, [Ru(bpy)2(sq-phen)]+ and [Ru(phen)2(bsq)]+ (phen is 1,10-phenanthroline) were fully characterized by elemental analysis, IR, 1H NMR, fast-atom bombardment or electron-impact mass, UV–vis and cyclic voltammetric methods. In the latter three complexes, the ligands catpy, catphen and cat are actually bound to the metal center as the corresponding semiquinone species, viz., 4-(4-pyridyl)-1,2-benzenedioleto(+I) (sq-py), 1,10-phenanthroline-5,6-dioleto(+I) (sq-phen) and 1,2-benzenedioleto(+I) (bsq), thus making the overall charge of the complexes formally equal to + 1 in each case. These three complexes are electron paramagnetic resonance active and exhibit an intense absorption band between 941 and 958 nm owing to metal-to-ligand charge transfer (MLCT, d Ruπ*sq) transitions. The other three ruthenium(II) complexes containing three photoactive ligands, mppne, mppae and mpppe, exhibit MLCT (d Ruπ*bpy ) bands in the 454–461-nm region and are diamagnetic. These can be characterized by the 1H NMR method. [Ru(bpy)2(mppne)]2+, [Ru(bpy)2(mppae)]2+ and [Ru(bpy)2(mpppe)]2+ exhibit redox waves corresponding to the RuIII/RuII couple along with the expected ligand (bpy and substituted bpy) based ones in their cyclic and differential pulse voltammograms (CH3CN, 0.1 M tetrabutylammonium hexafluorophosphate)—corresponding voltammograms of [Ru(bpy)2(sq-py)]+, [Ru(bpy)2(sq-phen)]+ and [Ru(phen)2(bsq)]+ are mainly characterized by waves corresponding to the quinone/semiquinone (q/sq) and semiquinone/1,2-diol (sq/cat) redox processes. The results of absorption and fluorescence titration as well as thermal denaturation studies reveal that [Ru(bpy)2(mppne)]2+ and [Ru(bpy)2(mppae)]2+ are moderate-to-strong binders of calf thymus DNA with binding constants ranging from 105 to 106 M−1. Under the identical conditions of drug and light dose, the DNA (supercoiled pBR 322) photocleavage activities of these two complexes follow the order:[Ru(bpy)2(mppne)]2+>[Ru(bpy)2(mppae)]2+, although the emission quantum yields follow the reverse order. The other ruthenium(II) complexes containing the semiquinone-based ligands are found to be nonluminescent and inefficient photocleavage agents of DNA. However, experiments shows that [Ru(bpy)2(sq)]+-based complexes oxidize the sugar unit and could be used as mild oxidants for the sugar moiety of DNA. Possible explanations for these observations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ji L-N, Zou X-H, Liu J-G (2001) Coord Chem Rev 216–217:513–536

  2. Erkkila KE, Odom DT, Barton JK (1999) Chem Rev 99:2777–2795

    PubMed  CAS  Google Scholar 

  3. Xiong Y, Ji L-N (1999) Coord Chem Rev 185–186:711–733

  4. Kelly SO, Barton JK (1998) In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 39. Marcel Dekker, New York, pp 211–249

  5. Mesmaeker AK-De, Lecomte JP, Kelly JM (1996) In: Mattay J (ed) Topics in current chemistry, vol 177. Springer, Berlin Heidelberg New York, pp 25–76

  6. Kane-Maguire NAP, Wheeler JF (2001) Coord Chem Rev 211:145–162

    CAS  Google Scholar 

  7. Kaes C, Katz A, Hosseini MW (2000) Chem Rev 100:3553–3590

    PubMed  CAS  Google Scholar 

  8. Armitage B (1998) Chem Rev 98:1171–1200

    PubMed  CAS  MathSciNet  Google Scholar 

  9. Sigman DS, Mazumder A, Perrin DM (1993) Chem Rev 93:2295–2316

    CAS  Google Scholar 

  10. DeArmond MK, Carlin CM (1981) Coord Chem Rev 36:325–355

    CAS  Google Scholar 

  11. Turro C, Bossmann SH, Jenkins Y, Barton JK, Turro NJ (1995) J Am Chem Soc 117:9026–9032

    CAS  Google Scholar 

  12. Friedman AE, Kumar CV, Turro NJ, Barton JK (1991) Nuclic Acids Res 19:2595–2602

    Article  CAS  Google Scholar 

  13. Hartshorn RM, Barton JK (1992) J Am Chem Soc 114:5919–5925

    CAS  Google Scholar 

  14. Murphy CJ, Barton JK (1993) Methods Enzymol 226:576–580

    PubMed  CAS  Google Scholar 

  15. Ambroise A, Maiya BG (1999) Inorg Chem 38:842–843

    Google Scholar 

  16. Ambroise A, Maiya BG (2000) Inorg Chem 39:4256–4263

    PubMed  CAS  Google Scholar 

  17. Ambroise A, Maiya BG (2000) Inorg Chem 39:4264–4272

    PubMed  CAS  Google Scholar 

  18. Sastri CV, Eswaromoorthy D, Giribabu L, Maiya BG (2003) J Inorg Biochem 94:138–145

    PubMed  CAS  Google Scholar 

  19. Ghosh D, Shukla AD, Banerjee R, Das A (2002) J Chem Soc Dalton Trans 1220–1225 (and references therein)

  20. Shukla AD, Das A (2000) Polyhedron 19:2605–2611

    CAS  Google Scholar 

  21. Shukla AD, Ganguly B, Dave PC, Samanta A, Das A (2002) Chem Commun 2648–2649

  22. Jose AD, Shukla AD, Krishnakumar D, Ganguly B, Das A, Ramakrishna G, Ghosh HN (2005) Inorg Chem 44:2414–2425

    PubMed  CAS  Google Scholar 

  23. Flowers L, Ohnishi ST, Penning TM (1997) Biochemistry 36:8640–8648

    PubMed  CAS  Google Scholar 

  24. Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ (2000) Chem Res Toxicol 13:135–160

    PubMed  CAS  Google Scholar 

  25. Schelvis JPM, Ramsey M, Sokolova O, Tavares C, Cecala C, Connell K, Wagner S, Gindt YM (2003) J Phys Chem B 107:12352–12362

    CAS  Google Scholar 

  26. Yang CH, Chen WF, Jong MC, Jong BJ, Chang JC, Waring MJ, Ma L, Sheh L (2004) J Am Chem Soc 126:8104–8105

    PubMed  CAS  Google Scholar 

  27. Perrin DD, Armarego WLF, Perrin DR (eds) (1980) Purification of laboratory chemicals. Pergamon Press, New York

    Google Scholar 

  28. Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, Zelewsky AV (1988) Coord Chem Rev 84:85–277

    CAS  Google Scholar 

  29. Sullivan BP, Salmon DJ, Meyer TJ (1978) Inorg Chem 17:3334–3341

    CAS  Google Scholar 

  30. Paw W, Eisenberg R (1997) Inorg Chem 36:2287–2293

    PubMed  CAS  Google Scholar 

  31. Decurtins S, Felix F, Ferguson J, Güdel HU, Ludi A (1980) J Am Chem Soc 102:4102–4106

    CAS  Google Scholar 

  32. Connelly NG, Geiger WE (1996) Chem Rev 96:877–910

    PubMed  CAS  Google Scholar 

  33. Reichmann ME, Rice SA, Thomas CA, Doty P (1954) J Am Chem Soc 76:3047–3053

    CAS  Google Scholar 

  34. Wolfe A, Shimer GH, Meehan T (1987) Biochemistry 26:6392–6396

    PubMed  CAS  Google Scholar 

  35. Kumar CV, Asuncion EH (1993) J Am Chem Soc 115:8547–8553

    CAS  Google Scholar 

  36. McGhee JD, von Hippel PH (1974) J Mol Biol 86:469–489

    PubMed  CAS  Google Scholar 

  37. Kelly JM, Tossi AB, McConnell DJ, OhUigin C (1985) Nucleic Acids Res 13:6017–6034

    PubMed  CAS  Google Scholar 

  38. Marmur J, Doty P (1962) J Mol Biol 5:109–118

    Article  PubMed  CAS  Google Scholar 

  39. Bhadbhade MM, Das A, Jeffery JC, McCleverty JA, Badiola JAN, Ward MD (1995) J Chem Soc Dalton Trans 2769–2777

  40. Ernst S, Hanel P, Jordanov J, Kaim W, Kasack V, Roth E (1989) J Am Chem Soc 111:1733–1738

    CAS  Google Scholar 

  41. Barthram AM, Cleary RL, Kowallick R, Ward MD (1998) Chem Commun 2695–2696

  42. Haga M, Dodsworth ES, Lever ABP (1986) Inorg Chem 25:447–453

    CAS  Google Scholar 

  43. Wilson GJ, Launikonis A, Sasse WHF, Mau AW-H (1997) J Phys Chem A 101:4860–4866

    CAS  Google Scholar 

  44. Pyle AM, Rehmann JP, Meshoyrer R, Kumar CV, Turro NJ, Barton JK (1989) J Am Chem Soc 111:3051–3058

    CAS  Google Scholar 

  45. Wang AH-J (1992) Curr Opin Struct Biol 2:361–368

    CAS  Google Scholar 

  46. Wang JG (1974) J Mol Biol 89:783–801

    PubMed  CAS  Google Scholar 

  47. Friedman AE, Chambron J-C, Sauvage J-P, Turro NJ, Barton JK (1990) J Am Chem Soc 112:4960–4962

    CAS  Google Scholar 

  48. Moucheron C, Mesmaeker AK-De, Choua S (1997) Inorg Chem 36:584–592

    CAS  Google Scholar 

  49. Wu J, Du F, Zhang P, Khan IA, Chen J, Liang Y (2005) J Inorg Biochem 99:1145–1154

    PubMed  CAS  Google Scholar 

  50. Long EC, Barton JK (1990) Acc Chem Res 23:271–273

    CAS  Google Scholar 

  51. Thorp HH (1995) Adv Inorg Chem 43:127–177

    CAS  Google Scholar 

  52. Norden B, Lincoln P, Akerman B, Tuite E (1996) In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 33. Marcel Dekker, New York, pp 177–252

  53. Goldstein BM, Barton JK, Berman HM (1986) Inorg Chem 25:842–847

    CAS  Google Scholar 

  54. Morgan RJ, Chatterjee S, Baker AD, Strekas TC (1991) Inorg Chem 30:2687–2692

    CAS  Google Scholar 

  55. Tysoe SA, Morgan RJ, Baker AD, Strekas TC (1993) J Phys Chem 97:1707–1711

    CAS  Google Scholar 

  56. Xu H, Zheng KC, Chen Y, Li YZ, Lin LJ, Li H, Zhang PX, Ji LN (2003) J Chem Soc Dalton Trans 2260–2268

  57. Zhen QX, Zhang QL, Liu JG, Ye BH, Ji LN, Wang L (2000) J Inorg Biochem 78:293–298

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Science and Technology (DST), New Delhi. T.G., A.D.S., D.A.J. and K.K. are thankful to the CSIR (New Delhi) for research fellowships. The UPE Program of the UGC (New Delhi) at the University of Hyderabad is also thanked for some of the instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Das.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, T., Maiya, B.G., Samanta, A. et al. Mixed-ligand complexes of ruthenium(II) containing new photoactive or electroactive ligands: synthesis, spectral characterization and DNA interactions. J Biol Inorg Chem 10, 496–508 (2005). https://doi.org/10.1007/s00775-005-0660-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0660-6

Keywords

Navigation