Skip to main content
Log in

Heterocyclic zinc-binding groups for use in next-generation matrix metalloproteinase inhibitors: potency, toxicity, and reactivity

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In an effort to improve the zinc-chelating portion of matrix metalloproteinase (MMP) inhibitors, we have developed a family of heterocyclic zinc-binding groups (ZBGs) as alternatives to the widely used hydroxamic acid moiety. Elaborating on findings from an earlier report, we performed in vitro inhibition assays with recombinant MMP-1, MMP-2, and in a cell culture assay using neonatal rat cardiac fibroblast cells. In both recombinant and cell culture assays, the new ZBGs were found to be effective inhibitors, typically 10–100-fold more potent than acetohydroxamic acid. The toxicity of these chelators was examined by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt cytotoxicity assays, which demonstrate that most of these compounds are nontoxic at concentrations of almost 100 μM. To address the possible interaction of sulfur-containing ZBGs with biological reductants, the reactivity of these chelators with 5,5′-dithiobis(2-nitrobenzoic acid) was examined. Finally, thione ZBGs were shown to be effective inhibitors of cell invasion through an extracellular matrix membrane. The data presented herein suggest these heterocyclic ZBGs are potent, nontoxic, and biocompatible compounds that show promise for incorporation into a new family of MMP inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Whittaker M, Floyd CD, Brown P, Gearing AJH (1999) Chem Rev 99:2735–2776

    Article  PubMed  CAS  Google Scholar 

  2. Massova I, Kotra LP, Fridman R, Mobashery S (1998) FASEB J 12:1075–1095

    PubMed  CAS  Google Scholar 

  3. Nagase H, Woessner JF Jr (1999) J Biol Chem 274:21491–21494

    Article  PubMed  CAS  Google Scholar 

  4. Skiles JW, Gonnella NC, Jeng AY (2004) Curr Med Chem 11:2911–2977

    PubMed  CAS  Google Scholar 

  5. Lindsey ML (2004) Heart Fail Rev 9:7–19

    Article  PubMed  CAS  Google Scholar 

  6. Coussens LM, Fingleton B, Matrisian LM (2002) Science 295:2387–2392

    Article  PubMed  CAS  Google Scholar 

  7. Puerta DT, Cohen SM (2004) Curr Top Med Chem 4:1551–1573

    Article  PubMed  CAS  Google Scholar 

  8. Overall CM, López-Otín C (2002) Nat Rev Cancer 2:657–672

    Article  PubMed  CAS  Google Scholar 

  9. Breuer E, Frant J, Reich R (2005) Expert Opin Ther Pat 15:253–269

    Article  CAS  Google Scholar 

  10. Singh J, Conzentino P, Cundy K, Gainor JA, Gilliam CL, Gordon TD, Johnson JA, Morgan BA, Schneider ED, Wahl RC, Whipple DA (1995) Bioorg Med Chem Lett 5:337–342

    Article  CAS  Google Scholar 

  11. Marmion CJ, Murphy T, Docherty JR, Nolan KB (2000) Chem Commun 1153–1154

  12. Puerta DT, Cohen SM (2002) Inorg Chem 41:5075–5082

    Article  PubMed  CAS  Google Scholar 

  13. Puerta DT, Cohen SM (2003) Inorg Chem 42:3423–3430

    Article  PubMed  CAS  Google Scholar 

  14. Jacobsen FE, Cohen SM (2004) Inorg Chem 43:3038–3047

    Article  PubMed  CAS  Google Scholar 

  15. Puerta DT, Lewis JA, Cohen SM (2004) J Am Chem Soc 126:8388–8389

    Article  PubMed  CAS  Google Scholar 

  16. Lewis JA, Cohen SM (2004) Inorg Chem 43:6534–6536

    Article  PubMed  CAS  Google Scholar 

  17. Lewis JA, Puerta DT, Cohen SM (2003) Inorg Chem 42:7455–7459

    Article  PubMed  CAS  Google Scholar 

  18. Monga V, Patrick BO, Orvig C (2005) Inorg Chem 44:2666–2677

    Article  PubMed  CAS  Google Scholar 

  19. Villarreal FJ, Kim NN, Ungab GD, Printz MP, Dillmann WH (1993) Circulation 88:2849–2861

    PubMed  CAS  Google Scholar 

  20. Yu L, Dennis EA (1991) Methods Enzymol 197:65–75

    Article  PubMed  CAS  Google Scholar 

  21. Hajduk PJ, Sheppard G, Nettesheim DG, Olejniczak ET, Shuker SB, Meadows RP, Steinman DH, Carrerea Jr GM, Marcotte PA, Severin J, Walter K, Smith H, Gubbins E, Simmer R, Holzman TF, Morgan DW, Davidsen SK, Summers JB, Fesik SW (1997) J Am Chem Soc 119:5818–5827

    Article  CAS  Google Scholar 

  22. Hajduk PJ, Shuker SB, Nettesheim DG, Craig R, Augeri DJ, Betebenner D, Albert DH, Guo Y, Meadows RP, Xu L, Michaelides M, Davidsen SK, Fesik SW (2002) J Med Chem 45:5628–5639

    Article  PubMed  CAS  Google Scholar 

  23. Fray MJ, Burslem MF, Dickinson RP (2001) Bioorg Med Chem Lett 11:567–570

    Article  PubMed  CAS  Google Scholar 

  24. Johnson LL, Pavlovsky AG, Johnson AR, Janowicz JA, Man C-F, Ortwine DF, Purchase CF II, White AD, Hupe DJ (2000) J Biol Chem 275:11026–11033

    Google Scholar 

  25. Liu ZD, Hider RC (2002) Coord Chem Rev 232:151–171

    Article  CAS  Google Scholar 

  26. Gorden AEV, Xu J, Raymond KN, Durbin P (2003) Chem Rev 103:4207–4282

    Article  PubMed  CAS  Google Scholar 

  27. Albert A, Rees CW, Tomlinson AJH (1956) Br J Exp Pathol 37:500–511

    PubMed  CAS  Google Scholar 

  28. Lewis JA, Tran BL, Puerta DT, Cohen SM (2005) Dalton Trans 15:2588–2596

    Article  PubMed  CAS  Google Scholar 

  29. Xie Z, Singh M, Singh K (2004) J Biol Chem 279:39513–39519

    Article  PubMed  CAS  Google Scholar 

  30. Tyagi SC, Lewis K, Pikes D, Marcello A, Mujumdar VS, Smiley LM, Moore CK (1998) J Cell Physiol 176:374–382

    Article  PubMed  CAS  Google Scholar 

  31. Festuccia C, Dolo V, Guerra F, Violini S, Muzi P, Pavan A, Bologna M (1998) Clin Exp Metastasis 16:513–528

    Article  PubMed  CAS  Google Scholar 

  32. Villarreal FJ, Griffin M, Omens J, Dillmann W, Nguyen J, Covell J (2003) Circulation 108:1487–1492

    Article  PubMed  CAS  Google Scholar 

  33. Migdalof BH, Antonaccio MJ, McKinstry DN, Singhvi SM, Lan S-J, Egli P, Kripalani KJ (1984) Drug Metab Rev 15:841–869

    Article  PubMed  CAS  Google Scholar 

  34. Farkas E, Katz Y, Bhusare S, Reich R, Röschenthaler G-V, Königsmann M, Breuer E (2004) J Biol Inorg Chem 9:307–315

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of California, San Diego, a Chris and Warren Hellman Faculty Scholar award (S.M.C.), an award from the American Heart Association (S.M.C.), a Pilot Project Grant from the Rebecca and John Moores U.C.S.D. Cancer Center, a Cottrell Scholar Award from the Research Corporation (S.M.C.), and N.I.H. grants HL-43617 (F.J.V.) and HL-07444 (R.G.). J.A.L. was supported in part by a GAANN fellowship (GM-602020-03), an ARCS award, and a U.C. TSR&TP Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth M. Cohen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puerta, D.T., Griffin, M.O., Lewis, J.A. et al. Heterocyclic zinc-binding groups for use in next-generation matrix metalloproteinase inhibitors: potency, toxicity, and reactivity. J Biol Inorg Chem 11, 131–138 (2006). https://doi.org/10.1007/s00775-005-0053-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0053-x

Keywords

Navigation