Skip to main content
Log in

Single-site mutations on the catalase–peroxidase from Sinorhizobium meliloti: role of the distal Gly and the three amino acids of the putative intrinsic cofactor

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

KatB is the only catalase–peroxidase identified so far in Sinorhizobium meliloti. It plays a housekeeping role, as it is expressed throughout all the growth phases of the free-living bacterium and also during symbiosis. This paper describes the functional and structural characterization of the KatB mutants Gly303Ser, Trp95Ala, Trp95Phe, Tyr217Leu, Tyr217Phe and Met243Val carried out by optical and electron spin resonance spectroscopy. The aim of this work was to investigate the involvement of these residues in the catalatic and/or peroxidatic reaction and falls in the frame of the open dispute around the factors that influence the balance between catalatic and peroxidatic activity in heme enzymes. The Gly303 residue is not conserved in any other protein of this family, whereas the Trp95, Tyr217 and Met243 residues are thought to form an intrinsic cofactor that is likely to play a role in intramolecular electron transfer. Spectroscopic investigations show that the Gly303Ser mutant is almost similar to the wild-type KatB and should not be involved in substrate binding. Mutations on Trp95, Tyr217 and Met243 clear out the catalatic activity completely, whereas the peroxidatic activity is maintained or even increased with respect to that of the wild-type enzyme. The k cat values obtained for these mutants suggest that Trp95 and Tyr217 form a huge delocalized system that provides a pathway for electron transfer to the heme. Conversely, Met243 is likely to be placed close to the binding site of the organic molecules and plays a crucial role in substrate docking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABTS:

2, 2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

APX:

Ascorbate peroxidase

CCP:

Cytochrome c peroxidase

CT:

Charge transfer

DMAB:

3-Dimethylaminobenzoic acid

ESR:

Electron spin resonance

LPO:

Lactoperoxidase

MBTH:

3-Methyl-2-benzothiazolinone hydrazone hydrochloride

MPO:

Myeloperoxidase

PAA:

Peracetic acid

RZ:

Reinheitszahl

References

  1. Klotz MG, Loewen PC (2003) Mol Biol Evol 20:1098–1112

    Article  PubMed  CAS  Google Scholar 

  2. Welinder KG (1991) Biochim Biophys Acta 1080:215–220

    PubMed  CAS  Google Scholar 

  3. Welinder KG, Mauro JM, Norskov-Lauritsen L (1992) Biochem Soc Trans 20:337–340

    PubMed  CAS  Google Scholar 

  4. Yamada Y, Fujiwara T, Sato T, Igarashi N, Tanaka N (2002) Nat Struct Biol 9:691–695

    Article  PubMed  CAS  Google Scholar 

  5. Carpena X, Loprasert S, Mongkolsuk S, Switala J, Loewen PC, Fita I (2003) J Mol Biol 327:475–489

    Article  PubMed  CAS  Google Scholar 

  6. Wada K, Tada T, Nakamura Y, Kinoshita T, Tamoi M, Shigeoka S, Nishimura K (2002) Acta Cryst Section D58:157–159

    CAS  Google Scholar 

  7. Bertrand T, Eady NA, Jones JN, Jesmin, Nagy JM, Jamart-Gregoire B, Raven EL, Brown KA (2004) J Biol Chem 279:38991–38999

    Article  PubMed  CAS  Google Scholar 

  8. Jakopitsch C, Kolarich D, Petutschnig G, Furtmuller PG, Obinger C (2003) FEBS Lett 552:135–140

    Article  PubMed  CAS  Google Scholar 

  9. Marcinkeviciene JA, Magliozzo RS, Blanchard JS (1995) J Biol Chem 270:22290–22295

    Article  PubMed  CAS  Google Scholar 

  10. Johnsson K, Froland WA, Schultz PG (1997) J Biol Chem 272:2834–2840

    Article  PubMed  CAS  Google Scholar 

  11. Jakopitsch C, Ruker F, Regelsberger G, Dockal M, Peschek GA, Obinger C (1999) Biol Chem 380:1087–1096

    Article  PubMed  CAS  Google Scholar 

  12. Hillar A, Peters B, Pauls R, Loboda A, Zhang H, Mauk AJ, Loewen PC (2000) Biochemistry 39:5868–5875

    Article  PubMed  CAS  Google Scholar 

  13. Regelsberger G, Jakopitsch C, Ruker F, Krois D, Peschek GA, Obinger C (2000) J Biol Chem 275:22854–22861

    Article  PubMed  CAS  Google Scholar 

  14. Jakopitsch C, Auer M, Regelsberger G, Jantschko W, Furtmuller PG, Ruker F, Obinger C (2003) Biochemistry 42:5292–5300

    Article  PubMed  CAS  Google Scholar 

  15. Jakopitsch C, Auer M, Ivancich A, Ruker F, Furtmuller PG, Obinger C (2003) J Biol Chem 278:20185–20191

    Article  PubMed  CAS  Google Scholar 

  16. Hérouart D, Sigaud S, Moreau S, Frendo P, Touati D, Puppo A (1996) J Bacteriol 178:6802–6809

    PubMed  Google Scholar 

  17. Sigaud S, Becquet V, Frendo P, Puppo A, Hérouart D (1999) J Bacteriol 181:2634–2639

    PubMed  CAS  Google Scholar 

  18. Jamet A, Sigaud S, Van de Sype G, Puppo A, Hérouart D (2003) Mol Plant Microb Interact 16:217–225

    Article  CAS  Google Scholar 

  19. Ardissone S, Frendo P, Laurenti E, Jantschko W, Obinger C, Puppo A, Ferrari RP (2004) Biochemistry 43:12692–12699

    Article  PubMed  CAS  Google Scholar 

  20. Yu S, Girotto S, Lee C, Magliozzo RS (2003) J Biol Chem 278:14769–14775

    Article  PubMed  CAS  Google Scholar 

  21. Casella L, Gullotti M, Poli S, Laurenti E, Ferrari RP, Marchesini A (1993) BioMetals 6:213–222

    Article  CAS  Google Scholar 

  22. Beers RF, Sizer IV (1952) J Biol Chem 195:133–137

    PubMed  CAS  Google Scholar 

  23. Nelson DP, Kiesow LA (1972) Anal Biochem 49:474–478

    Article  PubMed  CAS  Google Scholar 

  24. Ngo TT, Lenhoff HM (1980) Anal Biochem 105:389–397

    Article  PubMed  CAS  Google Scholar 

  25. Childs RE, Bardsley WG (1975) Biochem J 145:93–103

    PubMed  CAS  Google Scholar 

  26. Ferrari RP, Ghibaudi EM, Traversa S, Laurenti E, De Gioia L, Salmona M (1997) J Inorg Biochem 68:17–26

    Article  PubMed  CAS  Google Scholar 

  27. Chouchane S, Girotto S, Kapetanaki S, Schelvis JPM, Yu S, Magliozzo RS (2003) J Biol Chem 278:8154–8162

    Article  PubMed  CAS  Google Scholar 

  28. Vitello LB, Huang M, Erman JE (1990) Biochemistry 29:4283–4288

    Article  PubMed  CAS  Google Scholar 

  29. Neri F, Kok D, Miller MA Smulevich G (1997) Biochemistry 36:8947–8953

    Article  PubMed  CAS  Google Scholar 

  30. Heering HA, Indiani C, Regelsberger G, Jakopitsch C, Obinger C, Smulevich G (2002) Biochemistry 41:9237–9247

    Article  PubMed  CAS  Google Scholar 

  31. Santoni E, Jakopitsch C, Obinger C, Smulevich G (2004) Biochemistry 43:5792–5802

    Article  PubMed  CAS  Google Scholar 

  32. Ghibaudi E, Laurenti E (2003) Eur J Biochem 270:4403–4412 and references therein

    Google Scholar 

  33. Pond AE, Sono M, Elenkova EA, McRee DE, Goodin DB, English AM, Dawson JH (1999) J Inorg Biochem 76:165–174

    Article  PubMed  CAS  Google Scholar 

  34. Smulevich G, Miller MA, Gosztola D, Spiro TG (1989) Biochemistry 28:9905–9908

    Article  PubMed  CAS  Google Scholar 

  35. Regelsberger G, Jakopitsch C, Engleder M, Ruker F, Peschek GA, Obinger C (1999) Biochemistry 38:10480–10488

    Article  PubMed  CAS  Google Scholar 

  36. Chouchane S, Girotto S, Yu S, Magliozzo RS (2002) J Biol Chem 277:42633–42638

    Article  PubMed  CAS  Google Scholar 

  37. Goodwin DC, Grover TA, Aust SD (1997) Biochemistry 36:139–147

    Article  PubMed  CAS  Google Scholar 

  38. Chouchane S, Lippai I, Magliozzo RS (2000) Biochemistry 39:9975–9983

    Article  PubMed  CAS  Google Scholar 

  39. Wengenack NL, Todorovic S, Yu L, Rusnak F (1998) Biochemistry 37:15825–15834

    Article  PubMed  CAS  Google Scholar 

  40. Jakopitsch C, Ivancich A, Schmuckenschlager F, Wanasinghe A, Poltl G, Furtmuller PG, Ruker F, Obinger C (2004) J Biol Chem 279:46082–46095

    Article  PubMed  CAS  Google Scholar 

  41. Roe JA, Goodin DB (1993) J Biol Chem 268:20037–20045

    PubMed  CAS  Google Scholar 

  42. Kooter IM, Moguilevsky N, Bollen A, van der Veen LA, Otto C, Dekker HL, Wever R (1999) J Biol Chem 274:26794–26802

    Article  PubMed  CAS  Google Scholar 

  43. Kooter IM, Moguilevsky N, Bollen A, Sijtsema NM, Otto C, Wever R (1997) J Biol Inorg Chem 2:191–197

    Article  CAS  Google Scholar 

  44. Kooter IM, Koehler BP, Moguilevsky N, Bollen A, Wever R, Johnson MK (1999) J Biol Inorg Chem 4:684–691

    Article  PubMed  CAS  Google Scholar 

  45. Sawyer DT (1988) In: Martell AE, Sawyer DT (eds) Oxygen complexes and oxygen activation by transition metals. Plenum Publishing Co, New York, pp 131

  46. Monzani E, Gatti AL, Profumo A, Casella L, Gullotti M (1997) Biochemistry 36: 1918–1926

    Article  PubMed  CAS  Google Scholar 

  47. Yu S, Girotto S, Zhao X, Magliozzo RS (2003) J Biol Chem 278:44121–44127

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by a Ph.D. grant (to S.A.) from the ItalianMinistero per l’Istruzione, l’Università e la Ricerca. S.A. is grateful to R.P. Ferrari, who gave her access to the Bioinorganic Chemistry Laboratory of the University of Turin and allowed her to have all the necessary instrumental and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Puppo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ardissone, S., Laurenti, E., Frendo, P. et al. Single-site mutations on the catalase–peroxidase from Sinorhizobium meliloti: role of the distal Gly and the three amino acids of the putative intrinsic cofactor. J Biol Inorg Chem 10, 813–826 (2005). https://doi.org/10.1007/s00775-005-0032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0032-2

Keywords

Navigation