Skip to main content
Log in

Structural and functional reconstruction in situ of the [CuSMoO2] active site of carbon monoxide dehydrogenase from the carbon monoxide oxidizing eubacterium Oligotropha carboxidovorans

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Carbon monoxide dehydrogenase from the bacterium Oligotropha carboxidovorans catalyzes the oxidation of CO to CO2 at a unique [CuSMoO2] cluster. In the bacteria the cluster is assembled post-translational. The integration of S, and particularly of Cu, is rate limiting in vivo, which leads to CO dehydrogenase preparations containing the mature and fully functional enzyme along with forms of the enzyme deficient in one or both of these elements. The active sites of mature and immature forms of CO dehydrogenase were converted into a [MoO3] centre by treatment with potassium cyanide. We have established a method, which rescues 50% of the CO dehydrogenase activity by in vitro reconstitution of the active site through the supply of sulphide first and subsequently of Cu(I) under reducing conditions. Immature forms of CO dehydrogenase isolated from the bacterium, which were deficient in S and/or Cu at the active site, were similarly activated. X-ray crystallography and electron paramagnetic resonance spectroscopy indicated that the [CuSMoO2] cluster was properly reconstructed. However, reconstituted CO dehydrogenase contains mature along with immature forms. The chemical reactions of the reconstitution of CO dehydrogenase are summarized in a model, which assumes resulphuration of the Mo-ion at both equatorial positions at a 1:1 molar ratio. One equatorial Mo–S group reacts with Cu(I) in a productive fashion yielding a mature, functional [CuSMoO2] cluster. The other Mo–S group reacts with Cu(I), then Cu2S is released and an oxo group is introduced from water, yielding an inactive [MoO3] centre.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AAS:

Atomic absorption spectroscopy

EPR:

Electron paramagnetic resonance

MCD:

Molybdopterin cytosine dinucleotide

OD:

optical density

ORF:

open reading frame

PAGE:

polyacrylamide gel electrophoresis

SDS:

sodium dodecyl sulphate

References

  1. Meyer O, Gremer L, Ferner R, Ferner M, Dobbek H, Gnida M, Meyer-Klauke W, Huber R (2000) Biol Chem 381:865–876

    PubMed  CAS  Google Scholar 

  2. Dobbek H, Gremer L, Kiefersauer R, Huber R, Meyer O (2002) Proc Natl Acad Sci USA 99:15971–15976

    PubMed  ADS  CAS  Google Scholar 

  3. Gnida M, Ferner R, Gremer L, Meyer O, Meyer-Klaucke W (2003) Biochemistry 42:222–230

    PubMed  CAS  Google Scholar 

  4. Dobbek H, Gremer L, Meyer O, Huber R (1999) Proc Natl Acad Sci USA 96:8884–8889

    PubMed  ADS  CAS  Google Scholar 

  5. Gremer L, Kellner S, Dobbek H, Huber R, Meyer O (2000) J Biol Chem 275:1864–1872

    PubMed  CAS  Google Scholar 

  6. Fuhrmann S, Ferner M, Jeffke T, Henne A, Gottschalk G, Meyer O (2003) Gene 322:67–75

    PubMed  CAS  Google Scholar 

  7. Meyer O, Schlegel HG (1978) Arch Microbiol 118:35–43

    PubMed  CAS  Google Scholar 

  8. Meyer O, Stackebrandt E, Auling G (1993) Syst Appl Microbiol 16:390–395

    CAS  Google Scholar 

  9. Kraut M, Hugendieck I, Herwig S, Meyer O (1989) Arch Microbiol 152:335–341

    PubMed  CAS  Google Scholar 

  10. Okamoto K, Matsumoto K, Hille R, Eger BT, Pai EF, Nishino T (2004) Proc Natl Acad Sci USA 101:7931–7936

    PubMed  ADS  CAS  Google Scholar 

  11. Bradford MM (1976) Analyt Biochem 72:248–254

    PubMed  CAS  Google Scholar 

  12. Beisenherz G, Boltze HJ, Bücher T, Czok R, Garbade KH, Meyer-Arendt E, Pfleiderer G (1953) Z Naturforschg 8:555–577

    Google Scholar 

  13. Meyer O, Rajagopalan KV (1984) J Biol Chem 259:5612–5617

    PubMed  CAS  Google Scholar 

  14. Laemmli UK (1970) Nature 227:680–685

    PubMed  ADS  CAS  Google Scholar 

  15. Westley J (1981) Methods Enzymol 77:285–291

    Article  PubMed  CAS  Google Scholar 

  16. Minder W, Stocker E (1936) Z Kristallogr 94:137–142

    CAS  Google Scholar 

  17. Okaya Y, Knobler CB (1964) Acta Cryst 17:928–930

    CAS  Google Scholar 

  18. Morpurgo L, Rotilio G, Hartmann HJ, Weser U (1984) Biochem J 221:923–925

    PubMed  CAS  Google Scholar 

  19. Kiefersauer R, Than M, Dobbek H, Gremer L, Melero M, Strobl S, Dias JM, Soulimane T, Huber R (2000) J Appl Crystallogr 33:1223–1230

    CAS  Google Scholar 

  20. Kabsch W (1993) J Appl Crystallogr 26:795–800

    CAS  Google Scholar 

  21. Turk D (1996) In: Bourne PE, Watepaugh K (eds) Meeting of the international union of crystallography macromolecular computing school. Bellingham, WA: International Union of Crystallography

  22. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Acta Cryst D54:905–921

    CAS  Google Scholar 

  23. Laskowski RA, McArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 33:491–497

    Google Scholar 

  24. Wahl RC, Rajagopalan KV (1982) J Biol Chem 257:1354–1359

    PubMed  CAS  Google Scholar 

  25. Maiti NC, Tomita T, Kitagawa T, Okamoto K, Nishino T (2003) J Biol Inorg Chem 8:327–333

    PubMed  CAS  Google Scholar 

  26. DeLano WL (2002) The PyMOL user’s manual. DeLano Scientific, San Carlos

    Google Scholar 

  27. Bray RC, George GN, Lange R, Meyer O (1983) Biochem J 211:687–694

    PubMed  CAS  Google Scholar 

  28. Peariso K, Chohan BS, Carrano CJ, Kirk ML (2003) Inorg Chem 42:6194–6203

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Lothar Gremer and Jörg Johannes (Microbiology, University of Bayreuth) for the introduction of Cu–thiourea in the reconstitution of CO dehydrogenase, Dr. Lothar Gremer for providing a sample of CO dehydrogenase, and Dr. Reiner Kiefersauer and Professor Robert Huber (Max-Planck-Institut für Biochemie, Martinsried) for the transformation of crystals. This work was supported by grants from by the Deutsche Forschungsgemeinschaft to Ortwin Meyer (ME 732/8-1) and Holger Dobbek (DO 785/1), the Fonds der Chemischen Industrie (Frankfurt am Main, Germany), and contains instrumentation purchased with funds from the Freistaat Bayern, the Bundesministerium für Bildung und Forschung, and the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ortwin Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Resch, M., Dobbek, H. & Meyer, O. Structural and functional reconstruction in situ of the [CuSMoO2] active site of carbon monoxide dehydrogenase from the carbon monoxide oxidizing eubacterium Oligotropha carboxidovorans . J Biol Inorg Chem 10, 518–528 (2005). https://doi.org/10.1007/s00775-005-0006-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0006-4

Keywords

Navigation