Skip to main content
Log in

Bifunctional 3-hydroxy-4-pyridinone derivatives as potential pharmaceuticals: synthesis, complexation with Fe(III), Al(III) and Ga(III) and in vivo evaluation with 67Ga

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 11 August 2006

An Erratum to this article was published on 11 August 2006

Abstract

A series of extra-functionalized 3-hydroxy-4-pyridinone chelators of hard metal ions, containing different side-chains with peptidomimetic groups, was studied to assess the effect of those groups on the physico-chemical properties, the metal-chelating affinity and the in vivo behaviour of the compounds, in view of their potential pharmaceutical applications. Besides the synthesis of the chelators, the study of their properties in aqueous solution alone and in the presence of M 3+ (M = Fe, Ga and Al) was performed by potentiometric/spectroscopic techniques. The octanol/water partition coefficient values of these hydroxypyridinone derivatives cover ca. 3 orders of magnitude (1.1 > log  > −2). They all form very stable tris-chelated M(III) complexes, the pFe and pGa values ranging up to five orders of magnitude. The in vivo studies showed the effect of the ligands on the biodistribution of 67Ga citrate and also of 67Ga-complexes in mice, in view of the potential use of the ligands or complexes as metal decorporating or as imaging agents, respectively. Although almost all these peptidomimetic hydroxypyridinone derivatives present very rapid clearance rate from most organs, the L-ornithine derivative (H2L9) shows to be superior to the others and as good as Deferiprone as metal decontaminant of Ga. Concerning the 67Ga complexes, the benzyl-propylamine (H2L3) shows considerable bone retention, thus suggesting its potential application as imaging agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brock JH, Halliday JW, Pippard MJ (eds) (1994) Secondary iron overload. In: Iron metabolism in health and disease. W B Saunders Co Ltd, London, pp 271–309

  2. Critchton RR, Florence A, Ward RJ (2002) Coord Chem Rev 228:365–371

    Article  Google Scholar 

  3. Anderson CJ, Welch MJ (1999) Chem Rev 99:2219–2234

    Article  PubMed  CAS  Google Scholar 

  4. Faa G, Crisponi G (1999) Coord Chem Rev 184:291–310

    Article  CAS  Google Scholar 

  5. Liu ZD, Hider RC (2002) Med Res Rev 22:26–64

    Article  PubMed  CAS  Google Scholar 

  6. Yokel RA (2002) Coord Chem Rev 228:97–113

    Article  CAS  Google Scholar 

  7. Porter JB, Huehns ER (1989) Ballieres Clin Hematol 2:459–474

    CAS  Google Scholar 

  8. Reichert DE, Lewis JS, Anderson CJ (1999) Coord Chem Rev 184:3–66

    Article  CAS  Google Scholar 

  9. Kontoghiorghes GJ (1985) Lancet 1:817

    Article  PubMed  CAS  Google Scholar 

  10. Hider RC, Liu ZD (2003) Curr Med Chem 10:1051–1064

    Article  PubMed  CAS  Google Scholar 

  11. Gomez M, Esparza JI, Domingo JL, Corbella J, Singh PK, Jones MM (1998) Pharmacol Toxicol 82:295–300

    Article  PubMed  CAS  Google Scholar 

  12. Shin RW, Kruck TPA, Murayama HM, Kitamoto T (2003) Brain Res 961:139–146

    Article  PubMed  CAS  Google Scholar 

  13. Yokel R, Datta AK, Jackson EG (1991) J Pharmacol Exp Therapeutics 257:100–106

    CAS  Google Scholar 

  14. Zhang Z, Lyster DM, Webb GA, Orvig C (1992) Nucl Med Chem 19:327–335

    Google Scholar 

  15. Ellis BL, Sampson CB, Abeysinghe rd, Porter JB, Hider RC (1999) Eur J Nucl Med 26:1400–1406

    Article  PubMed  CAS  Google Scholar 

  16. Santos MA (2002) Coord Chem Rev 228:187–203

    Article  Google Scholar 

  17. Chaves S, Gil M, Marques S, Gano L, Santos MA (2003) J Inorg Biochem 97:161–172

    Article  PubMed  CAS  Google Scholar 

  18. Santos MA, Gama S, Gano L, Cantinho G, Farkas E (2004) J Chem Soc Dalton Trans 21:3772–3781

    Google Scholar 

  19. Santos MA, Gil M, Marques S, Gano L, Cantinho G, Chaves S (2002) J Inorg Biochem 92:43–54

    Article  PubMed  CAS  Google Scholar 

  20. Armarego WLF, Perring DD (eds) (1999) Purification of laboratory chemicals, 4th edn. Butterworth–Heinemann Press, Oxford

    Google Scholar 

  21. Santos MA, Grazina R, Neto AQ, Cantinho G, Gano L, Patrício L (2000) J Inorg Biochem 78:303–311

    Article  PubMed  CAS  Google Scholar 

  22. Rossotti FJC, Rossotti H (1965) J Chem Ed 42:375–378

    Article  CAS  Google Scholar 

  23. Gans P, Sabatini A, Vacca A (1996) Talanta 43:1739–1753

    Article  CAS  PubMed  Google Scholar 

  24. Öhman LO, Forschling W (1981) Acta Chem Scand Ser A 35:795–802

    Article  Google Scholar 

  25. Baes CF, Mesmer RE (eds) (1976) The hydrolysis of cations. Wiley, New York

    Google Scholar 

  26. Covington AK, Paabo M, Robinson RA, Bates RG (1968) Anal Chem 40:700–706

    Article  CAS  Google Scholar 

  27. Zékány L, Nagypál I, Peintler G (2001) PSEQUAD 501

  28. Delgado R, Fraústo da Silva JJR, Amorim MTS, Cabral MF, Chaves S, Costa J (1991) Anal Chim Acta 245:271–282

    Article  CAS  Google Scholar 

  29. Leo A, Hansch C, Elkins D (1971) Chem Rev 71:526–616

    Article  Google Scholar 

  30. Rai BL, Dehhordi LS, Khodr H, Jin Y, Liu Z, Hider RC (1998) J Med Chem 41:3347–3358

    Article  PubMed  CAS  Google Scholar 

  31. John CS, Vilmer BJ, Geyer BC, Moody T, Bowen WD (1999) Cancer Res 59:4578–4583

    PubMed  CAS  Google Scholar 

  32. de Costa BR, Radescu L, Di Paolo L, Bowen WD (1992) J Med Chem 35:38–47

    Article  PubMed  Google Scholar 

  33. Bedurftz S, Wunsch B (2004) Bioorg Med Chem 12:3299–3311

    Google Scholar 

  34. Menegatti R, Cunha AC, Ferreira VF, Perreira EFR, El-Nabawi A, Eldefrawi AT, Albuquerque EX, Neves G, Rates SMK, Fraga CAM, Barreiro EJ (2003) Bioorg Med Chem 11:4807–4813

    Article  PubMed  CAS  Google Scholar 

  35. Santos MA, Gil M, Marques S, Gano L, Chaves S (2005) Anal Bioanal Chem 381:413–419

    Article  PubMed  CAS  Google Scholar 

  36. Clarke ET, Martell AE (1992) Inorg Chim Acta 196:185–194

    Article  CAS  Google Scholar 

  37. Martell AE, Motekaitis RJ (eds) (1988) Determination and use of stability constants. First supplement, VCH, New York, pp 428–429

  38. Zhang Z, Rettig SJ, Orvig C (1991) Inorg Chem 30:509–515

    Article  CAS  Google Scholar 

  39. Xiao G, Helm D, Hider, RC, Dobbin PS (1992) J Chem Soc Dalton Trans 3265–3271

  40. Nelson WO, Rettig SJ, Orvig C (1989) Inorg Chem 28:3153–3157

    Article  CAS  Google Scholar 

  41. Martell AE, Smith RM (eds) (1977) Critical stability constants, vol 3. Plenum Press, New York, pp 163

  42. Gunasekera SW, King LJ, Lavender PJ (1972) Clin Chim Acta 39:401–406

    Article  PubMed  CAS  Google Scholar 

  43. Larson S, Rasey J, Allen D, Grunbaum DZ (1979) J Nucl Med 20:843–946

    PubMed  CAS  Google Scholar 

  44. Hara T (1974) Int J Nucl Med Biol 1:152–154

    Article  PubMed  CAS  Google Scholar 

  45. Harris HR, Pecoraro VL (1983) Biochem 22:292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Portuguese Fundação para a Ciência e Tecnologia (FCT) (project POCTI/35344/99) and COST D21/001 program) for financial support. We also thank Dr Guilhermina Cantinho, Instituto de Medicina Nuclear, Faculdade de Medicina de Lisboa, for her support and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Amélia Santos.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00775-006-0149-y

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, M.A., Gil, M., Gano, L. et al. Bifunctional 3-hydroxy-4-pyridinone derivatives as potential pharmaceuticals: synthesis, complexation with Fe(III), Al(III) and Ga(III) and in vivo evaluation with 67Ga. J Biol Inorg Chem 10, 564–580 (2005). https://doi.org/10.1007/s00775-005-0003-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0003-7

Keywords

Navigation