Skip to main content

Advertisement

Log in

Acetyl-coenzyme A synthase: the case for a Nip0-based mechanism of catalysis

  • Commentary
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Acetyl-CoA synthase (also known as carbon monoxide dehydrogenase) is a bifunctional Ni-Fe-S-containing enzyme that catalyzes the reversible reduction of CO2 to CO and the synthesis of acetyl-coenzyme A from CO, CoA, and a methyl group donated by a corrinoid iron-sulfur protein. The active site for the latter reaction, called the A-cluster, consists of an Fe4S4 cubane bridged to the proximal Ni site (Nip), which is bridged in turn to the so-called distal Ni site. In this review, evidence is presented that Nip achieves a zero-valent state at low potentials and during catalysis. Nip appears to be the metal to which CO and methyl groups bind and then react to form an acetyl-Nip intermediate. Methyl group binding requires reductive activation, where two electrons reduce some site on the A-cluster. The coordination environment of the distal Ni suggests that it could not be stabilized in redox states lower than 2+. The rate at which the [Fe4S4]2+ cubane is reduced is far slower than that at which reductive activation occurs, suggesting that the cubane is not the site of reduction. An intriguing possibility is that Nip2+ might be reduced to the zero-valent state. Reinforcing this idea are Ni-organometallic complexes in which the Ni exhibits analogous reactivity properties when reduced to the zero-valent state. A zero-valent Ni stabilized exclusively with biological ligands would be remarkable and unprecedented in biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lindahl PA (2002) Biochemistry 41:2097–2105

    Article  CAS  PubMed  Google Scholar 

  2. Wood HG, Ljungdahl LG (1991) In: Shively JM, Barton LL (eds) Variations in autotrophic life. Academic Press, New York, pp 201–250

  3. Lindahl PA, Chang B (2001) Origins Life Evol Biosphere 31:403–434

    Article  CAS  Google Scholar 

  4. Doukov TI, Iverson TM, Seravalli J, Ragsdale SW, Drennan CL (2002) Science 298:567–572

    Article  CAS  PubMed  Google Scholar 

  5. Darnault C, Volbeda A, Kim EJ, Legrand P, Vernede X, Lindahl PA, Fontecilla-Camps JC (2003) Nat Struct Biol 10:271–279

    Article  CAS  PubMed  Google Scholar 

  6. Svetlitchnyi V, Dobbek H, Meyer-Klaucke W, Meins T, Thiele B, Römer P, Huber R, Meyer O (2004) Proc Natl Acad Sci USA 101:446–451

    Article  CAS  PubMed  Google Scholar 

  7. Echols N, Milburn D, Gerstein M (2003) Nucleic Acids Res 31:478–482

    Article  CAS  PubMed  Google Scholar 

  8. Krebs WG, Gerstein M (2000) Nucleic Acids Res 28:1665–1675

    Article  CAS  PubMed  Google Scholar 

  9. Seravalli J, Gu W, Tam A, Strauss E, Begley TP, Cramer SP, Ragsdale SW (2003) Proc Natl Acad Sci USA 100:3689–3694

    Article  CAS  PubMed  Google Scholar 

  10. Gencic S, Grahame DA (2003) J Biol Chem 278:6101–6110

    Article  CAS  PubMed  Google Scholar 

  11. Bramlett MR, Tan X, Lindahl PA (2003) J Am Chem Soc125:9316–9317

    Article  Google Scholar 

  12. Seravalli J, Xiao Y, Gu W, Cramer SP, Antholine WE, Krymov V, Gerfen GJ, Ragsdale SW (2004) Biochemistry 43:3944–3456

    Article  CAS  PubMed  Google Scholar 

  13. Krüger HJ, Peng G, Holm RH (1991) Inorg Chem 30:734–742

    CAS  Google Scholar 

  14. Hanss J, Krüger HJ (1998) Angew Chem Int Ed 37:360–363

    Article  CAS  Google Scholar 

  15. Marlin DS, Mascharak PK (2000) Chem Soc Rev 29:69–74

    Article  CAS  Google Scholar 

  16. Harrop TC, Olmstead MM, Mascharak PK (2002) Inorg Chim Acta 338:189–195

    Article  CAS  Google Scholar 

  17. Loke HK, Bennett B, Lindahl PA (2000) Proc Natl Acad Sci USA 97:12530–12535

    Article  CAS  PubMed  Google Scholar 

  18. Loke HK, Tan X, Lindahl PA (2002) J Am Chem Soc 124:8667–8672

    Article  CAS  PubMed  Google Scholar 

  19. Lindahl PA, Ragsdale SW, Münck E (1990) J Biol Chem 265:3880–3888

    CAS  PubMed  Google Scholar 

  20. Xia J, Hu Z, Popescu C, Lindahl PA, Münck E (1997) J Am Chem Soc 119:8301–8312

    Article  CAS  Google Scholar 

  21. Fan CL, Gorst CM, Ragsdale SW, Hoffman BM (1991) Biochemistry 30:431–435

    CAS  PubMed  Google Scholar 

  22. Shin W, Lindahl PA (1992) Biochemistry 31:12870–12875

    CAS  PubMed  Google Scholar 

  23. Russell WK, Stålhandske CMV, Xia J, Scott RA, Lindahl PA (1998) J Am Chem Soc 120:7502–7510

    Article  CAS  Google Scholar 

  24. Lindahl PA, Münck E, Ragsdale SW (1990) J Biol Chem 265:3873–3879

    CAS  PubMed  Google Scholar 

  25. Shin W, Lindahl PA (1992) J Am Chem Soc 114:9718–9719

    CAS  Google Scholar 

  26. Shin W, Anderson ME, Lindahl PA (1993) J Am Chem Soc 115:5522–5526

    CAS  Google Scholar 

  27. Schenker RP, Brunold TC (2003) J Am Chem Soc 125:13962–13963

    Article  CAS  PubMed  Google Scholar 

  28. Stavropoulos P, Muetterties MC, Carrie M, Holm RH (1991) J Am Chem Soc 113:8485–8491

    CAS  Google Scholar 

  29. Stoppioni P, Dapporto P, Sacconi L (1978) Inorg Chem 17:718–725

    CAS  Google Scholar 

  30. Pezacka E, Wood HG (1988) J Biol Chem 263:16000–16006

    CAS  PubMed  Google Scholar 

  31. Lu WP, Harder SR, Ragsdale SW (1990) J Biol Chem 265:3124–3133

    CAS  PubMed  Google Scholar 

  32. Barondeau DP, Lindahl PA (1997) J Am Chem Soc 119:3959–3970

    Article  CAS  Google Scholar 

  33. Tan X, Sewell C, Yang Q, Lindahl PA (2003) J Am Chem Soc 125:318–319

    Article  CAS  PubMed  Google Scholar 

  34. Kumar M, Qiu D, Spiro TG, Ragsdale SW (1995) Science 270:628–630

    CAS  PubMed  Google Scholar 

  35. Lebertz H, Simon H, Courtney LF, Benkovic SJ, Zydowsky LD, Lee K, Floss HG (1987) J Am Chem Soc 109:3173–3174

    CAS  Google Scholar 

  36. Tan X, Sewell C, Lindahl PA (2002) J Am Chem Soc 124:6277–6284

    Article  CAS  PubMed  Google Scholar 

  37. Webster CE, Darensbourg MY, Lindahl PA, Hall MB (2004) J Am Chem Soc 126:3410–3411

    Article  CAS  PubMed  Google Scholar 

  38. Hsiao Y-M, Chojnacki SS, Hinton P, Reibenspies JH, Darensbourg MY (1993) Organometallics 12:870–875

    CAS  Google Scholar 

  39. Wang Q, Blake AJ, Davies ES, McInnes EJL, Wilson C, Schröder M (2003) Chem Commun 24:3012–3013

    Article  Google Scholar 

  40. Musie G, Farmer PJ, Tuntulani T, Reibenspies JH, Darensbourg MY (1996) Inorg Chem 35:2176–2183

    Article  CAS  PubMed  Google Scholar 

  41. Linck RC, Spahn CW, Rauchfuss TB, Wilson SR (2003) J Am Chem Soc 125:8700–8701

    Article  CAS  PubMed  Google Scholar 

  42. Krishnan R, Riordan CG (2004) J Am Chem Soc 126:4484–4485

    Article  CAS  PubMed  Google Scholar 

  43. Tolman CA, Seidel WC, Gosser LW (1974) J Am Chem Soc 96:53–60

    CAS  Google Scholar 

  44. Daniele S, Martelli M, Bontempelli G (1991) Inorg Chim Acta 179:105–111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Many of the developments described here could not have been made without the efforts of Juan C. Fontecilla-Camps and his group in Grenoble. Discussions with Marcetta Y. Darensbourg and Michael B. Hall were critical in developing the Ni0 hypothesis. The author thanks his co-workers at Texas A&M who worked on problems related to this hypothesis over the past decade or so, including Woonsup Shin, David P. Barondeau, Xiangshi Tan, and Matthew R. Bramlett. Thanks are also due to Mark Gerstein and co-workers (Yale University) for preparing the movie of the α subunit conformations. This project is supported by the National Institutes of Health (GM46441).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Lindahl.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindahl, P.A. Acetyl-coenzyme A synthase: the case for a Nip0-based mechanism of catalysis. J Biol Inorg Chem 9, 516–524 (2004). https://doi.org/10.1007/s00775-004-0564-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0564-x

Keywords

Navigation