Skip to main content
Log in

Geobacillus stearothermophilus V ubiE gene product is involved in the evolution of dimethyl telluride in Escherichia coli K-12 cultures amended with potassium tellurate but not with potassium tellurite

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A 3.8-kb fragment of chromosomal DNA of Geobacillus stearothermophilus V cloned in pSP72 (p1VH) confers resistance to potassium tellurite (K2TeO3) and to potassium tellurate (K2TeO4) when the encoded genes are expressed in Escherichia coli K-12. The nt sequence of the cloned fragment predicts three ORFs of 780, 399, and 600 bp, whose encoded protein products exhibit about 80% similarity with the SUMT methyltransferase and the BtuR protein of Bacillus megaterium, and with the UbiE methyltransferase of Bacillus anthracis A2012, respectively. In addition, E. coli/p1VH cells evolved dimethyl telluride, which was released into the headspace gas above liquid cultures when amended with K2TeO3 or with K2TeO4. After 48 h of growth in the presence of these compounds, a protein of about 25 kDa was found at a significantly higher level when crude extracts were analyzed by SDS-PAGE. The N-terminal amino acid (aa) sequence of this protein, obtained by Edman degradation, matched the deduced aa sequence predicted by the G. stearothermophilus V ubiE gene. This gene was amplified by PCR, subcloned in pET21b, and transformed into E. coli JM109(DE3). Interestingly, DMTe evolution occurred when these modified cells were grown in K2TeO4 – but not in K2TeO3 – amended media. These results may be indicative that the two Te oxyanions could be detoxified in the cell by different metabolic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Summers AO, Jacoby GA (1977) J Bacteriol 129:276–281

    CAS  PubMed  Google Scholar 

  2. Taylor DE (1999) Trends Microbiol 7:111–115

    CAS  PubMed  Google Scholar 

  3. Garberg P, Engman L, Tolmachev V, Lundqvist H, Gerdes R, Cotgreave I (1999) Int J Biochem Cell Biol 31:291–301

    Article  CAS  PubMed  Google Scholar 

  4. Turner RJ, Weiner JH, Taylor DE (1999) Microbiology 145:2549–2557

    CAS  PubMed  Google Scholar 

  5. Turner RJ, Aharonowitz Y, Weiner JH, Taylor DE (2001) Can J Microbiol 47:33–40

    Article  CAS  PubMed  Google Scholar 

  6. Tantaleán JC, Araya MA, Saavedra CP, Fuentes DE, Pérez JM, Calderón IL, Youderian P, Vásquez CC (2003) J Bacteriol 185:5831–5837

    Article  PubMed  Google Scholar 

  7. Scala J, Williams H (1963) Arch Biochem Biophys 101:319–324

    CAS  PubMed  Google Scholar 

  8. Shimada T, Sakazaki R, Fujimura S, Niwano K, Mishina M, Takizawa K (1990) Jpn J Med Sci Biol 43:37–41

    CAS  PubMed  Google Scholar 

  9. Zadik PM, Chapman PA, Siddons CA (1993) J Med Microbiol 39:155–158

    CAS  PubMed  Google Scholar 

  10. Walter EG, Taylor DE (1992) Plasmid 27:52–64

    CAS  PubMed  Google Scholar 

  11. Tucker FL, Walper JF, Appleman MD, Donohue J (1962) J Bacteriol 83:1313–1314

    CAS  PubMed  Google Scholar 

  12. Tucker FL, Thomas JW, Appleman MD, Goodman SH, Donohue J (1966) J Bacteriol 92:1311–1314

    CAS  PubMed  Google Scholar 

  13. Taylor DE, Walter EG, Sherburne R, Bazett-Jones DP (1988) J Ultrastruct Mol Struct Res 99:18–26

    CAS  PubMed  Google Scholar 

  14. Burian J, Tu N, Kl’ucar L, Guller L, Lloyd-Jones G, Stuchlik S, Fejdi P, Siekel P, Turna J (1998) Folia Microbiol (Praha) 43:589–599

    Google Scholar 

  15. Terai T, Kamahora T, Yamamura Y (1958) J Bacteriol 75:535–539

    CAS  PubMed  Google Scholar 

  16. Cooper PD, Few AV (1952) Biochem J 51:522–527

    CAS  PubMed  Google Scholar 

  17. Chiong M, Barra R, González E, Vásquez C (1988) Appl Environ Microbiol 54:610–612

    CAS  Google Scholar 

  18. Chiong M, González E, Barra R, Vásquez C (1988) J Bacteriol 170:3269–3273

    CAS  PubMed  Google Scholar 

  19. Moore M, Kaplan S (1992) J Bacteriol 174:1505–1514

    CAS  PubMed  Google Scholar 

  20. Moscoso H, Saavedra C, Loyola C, Pichuantes S, Vásquez C (1998) Res Microbiol 149:389–397

    CAS  PubMed  Google Scholar 

  21. Avazeri C, Turner R, Pommier J, Weiner J, Giordano G, Verméglio A (1997) Microbiology 143:1181–1189

    CAS  PubMed  Google Scholar 

  22. Trutko SM, Akimenko VK, Suzina NE, Anisimova LA, Shlyapnikov MG, Baskunov BP, Duda VI, Boronin AM (2000) Arch Microbiol 173:178–186

    Article  CAS  PubMed  Google Scholar 

  23. Borsetti F, Toninello A, Zannoni D (2003) FEBS Lett 554:315–318

    Article  CAS  PubMed  Google Scholar 

  24. Van Fleet-Stalder V, Chasteen TG (1998) J Photochem Photobiol 43:193–203

    Article  Google Scholar 

  25. Ishihara K, Honma N, Uchiyama T (1995) J Ferment Bioeng 80:633

    Google Scholar 

  26. Stalder V, Bernard N, Hanselmann KW, Bachofen R (1995) Anal Chim Acta 303:91–97

    Article  CAS  Google Scholar 

  27. Ranjard L, Nazaret S, Cournoyer B (2003) Appl Environ Microbiol 69:3784–3790

    Article  CAS  PubMed  Google Scholar 

  28. Basnayake RST, Bius JH, Akpolat MO, Chasteen TG (2001) Appl Organomet Chem 15:499–510

    Article  CAS  Google Scholar 

  29. Chasteen TG, Silver GM, Birks JW, Fall R (1990) Chromatographia 30:181–185

    CAS  Google Scholar 

  30. Hansen K (1853) Annalen 86:208–215

    Google Scholar 

  31. Larner AJ (1995) Med Hypotheses 44:295–297

    CAS  PubMed  Google Scholar 

  32. Xu Q, Chao B, Wang Y, Dittmer DC (1997) Tetrahedron 53:12131–12146

    Article  CAS  Google Scholar 

  33. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  34. Vásquez C, Saavedra C, Loyola C, Araya M, Pichuantes S (2001) Curr Microbiol 43:418–421

    Article  PubMed  Google Scholar 

  35. Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  36. Raux E, Lanois A, Warren M J, Rambach A, Thermes C (1998) Biochem J 335:159–166

    CAS  PubMed  Google Scholar 

  37. Read TD, Salzberg SL, Pop M, Shumway M, Umayam L, Jiang L, Holtzapple E, Busch JD, Smith KL, Schupp JM, Solomon D, Keim P, Fraser CM (2002) Science 296:2028–2033

    Article  CAS  PubMed  Google Scholar 

  38. Cournoyer B, Watanabe S, Vivian A (1998) Biochim Biophys Acta 1397:161–168

    Article  CAS  PubMed  Google Scholar 

  39. Ridley WP, Dizikes L, Cheh A, Wood JM (1977) Environ Health Perspect 19:43–46

    CAS  PubMed  Google Scholar 

  40. Raux E, Lanois A, Levillayer F, Warren MJ, Brody E, Rambach A, Thermes C (1996) J Bacteriol 178:753–767

    CAS  PubMed  Google Scholar 

  41. Fleming RW, Alexander M (1972) Appl Microbiol 24:424–429

    CAS  PubMed  Google Scholar 

  42. Chou P, Ohtsuka M, Minowa T, Yamasato K, Sakano Y, Matsuzawa H, Ohta T, Sakai H (1995) Biosci Biotechnol Biochem 59:1817–1824

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Robert A. Welch departmental grant (J.W.S., M.F.P., and T.G.C.) and by grant 1030234 from FONDECYT (Chile) to C.C.V. and by DICYT grants from Universidad de Santiago de Chile to C.P.S. and to C.C.V. M.A.A. was supported by a doctoral fellowship from MECESUP UCH 106 (Chile).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio C. Vásquez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araya, M.A., Swearingen, J.W., Plishker, M.F. et al. Geobacillus stearothermophilus V ubiE gene product is involved in the evolution of dimethyl telluride in Escherichia coli K-12 cultures amended with potassium tellurate but not with potassium tellurite. J Biol Inorg Chem 9, 609–615 (2004). https://doi.org/10.1007/s00775-004-0554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0554-z

Keywords

Navigation