Skip to main content
Log in

NMR-validated structural model for oxidized Rhodopseudomonas palustris cytochrome c 556

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The structure of oxidized Rhodopseudomonas palustris cytochrome c 556 has been modeled after that of high-spin cytochrome c′ from the same bacterium, the latter being the protein with the greatest sequence identity (35%) among all sequenced proteins in the genomes. The two proteins differ in the number of ligands to iron and in spin state, the former being six-coordinate low-spin and the latter five-coordinate high-spin. In order to validate this modeled structure, several structural restraints were obtained by performing a restricted set of NMR experiments, without performing a complete assignment of the protein signals. The aim was to exploit the special restraints arising from the paramagnetism of the metal ion. A total of 43 residual-dipolar-coupling and 74 pseudocontact-shift restraints, which together sampled all regions of the protein, were used in conjunction with over 40 routinely obtained NOE distance restraints. A calculation procedure was undertaken combining the program MODELLER and the solution structure determination program PARAMAGNETIC DYANA, which includes paramagnetism-based restraints. The directions and magnitude of the magnetic susceptibility anisotropy tensor were also calculated. The approach readily provides useful results, especially for paramagnetic metalloproteins of moderate to large dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3 A
Fig. 4 A
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Moore GR, McClune GJ, Clayden NJ, Williams RJ, Alsaadi BM, Angstrom J, Ambler RP, Van Beeumen J, Tempst P, Bartsch RG, Meyer TE, Kamen MD (1982) Eur J Biochem 123:73–80

    CAS  PubMed  Google Scholar 

  2. La Mar GN, Jackson JT, Dugad LB, Cusanovich MA, Bartsch RG (1990) J Biol Chem 265:16173–16180

    PubMed  Google Scholar 

  3. Banci L, Bertini I, Turano P, Vicens Oliver M (1992) Eur J Biochem 204:107–112

    CAS  PubMed  Google Scholar 

  4. Tempst P, Van Beeumen J (1983) Eur J Biochem 129:603–614

    CAS  PubMed  Google Scholar 

  5. Tempst P, Van Beeumen J (1983) Eur J Biochem 135:321–330

    CAS  PubMed  Google Scholar 

  6. Ambler RP, Bartsch RG, Daniel M, Kamen MD, McLellan L, Meyer TE, Van Beeumen J (1981) Proc Natl Acad Sci USA 78:6854–6857

    CAS  PubMed  Google Scholar 

  7. Ambler RP, Meyer TE, Bartsch RG, Cusanovich MA (2001) Arch Biochem Biophys 388:25–33

    Article  CAS  PubMed  Google Scholar 

  8. Hu W, De Smet L, Van Driessche G, Bartsch RG, Meyer TE, Cusanovich MA, Van Beeumen J (1998) Eur J Biochem 258:29–36

    CAS  PubMed  Google Scholar 

  9. Shibata N, Iba S, Misaki S, Meyer TE, Bartsch RG, Cusanovich MA, Morimoto Y, Higuchi Y, Yasuoka N (1998) J Mol Biol 284:751

    Article  CAS  PubMed  Google Scholar 

  10. Sanchez R, Pieper U, Melo F, Marti-Renom MA, Mirkovic N, Sali A (2000) Nat Struct Biol 7:986–990

    Article  CAS  PubMed  Google Scholar 

  11. Fesik SW, Zuiderweg ERP (1988) J Magn Reson 78:588–593

    Google Scholar 

  12. Bertini I, Luchinat C, Parigi G (2002) Prog NMR Spectrosc 40:249–273

    Article  CAS  Google Scholar 

  13. Kurland RJ, McGarvey BR (1970) J Magn Reson 2:286–301

    CAS  Google Scholar 

  14. Bertini I, Luchinat C, Parigi G (2001) Solution NMR of paramagnetic molecules. Elsevier, Amsterdam

  15. Banci L, Bertini I, Huber JG, Luchinat C, Rosato A (1998) J Am Chem Soc 120:12903–12909

    Article  CAS  Google Scholar 

  16. Sali A, Potterton L, Yuan F, Van Vlijmen H, Karplus M (1995) Proteins Struct Funct Genet 23:318–326

    CAS  PubMed  Google Scholar 

  17. Huang X, Miller W (1991) Adv Appl Math 12:337–357

    Google Scholar 

  18. Güntert P, Mumenthaler C, Wüthrich K (1997) J Mol Biol 273:283–298

    PubMed  Google Scholar 

  19. Banci L, Bertini I, Cremonini MA, Gori Savellini G, Luchinat C, Wüthrich K, Güntert P (1998) J Biomol NMR 12:553–557

    CAS  Google Scholar 

  20. Bertini I, Luchinat C, Parigi G (2002) Concepts Magn Reson 14:259–286

    Article  CAS  Google Scholar 

  21. Emerson SD, La Mar GN (1990) Biochemistry 29:1545–1556

    CAS  PubMed  Google Scholar 

  22. Bren KL, Gray HB, Banci L, Bertini I, Turano P (1995) J Am Chem Soc 117:8067–8073

    CAS  Google Scholar 

  23. Banci L, Bertini I, Pierattelli R, Vila AJ (1994) Inorg Chem 33:4338–4343

    CAS  Google Scholar 

  24. Johnson RD, Ramaprasad S, La Mar GN (1983) J Am Chem Soc 105:7205–7206

    CAS  Google Scholar 

  25. Banci L, Bertini I, Luchinat C, Piccioli M, Scozzafava A, Turano P (1989) Inorg Chem 28:4650–4656

    CAS  Google Scholar 

  26. Banci L, Bertini I, Luchinat C, Piccioli M (1991) In: Bertini I, Molinari H, Niccolai N (eds) NMR and biomolecular structure. VCH, Weinheim, pp 31–60

  27. Arnesano F, Banci L, Bertini I, Faraone-Mennella J, Rosato A, Barker PD, Fersht AR (1999) Biochemistry 38:8657–8670

    Article  CAS  PubMed  Google Scholar 

  28. Arnesano F, Banci L, Bertini I, Ciofi-Baffoni S, de Lumley Woodyear T, Johnson CM, Barker PD (2000) Biochemistry 39:1499–1514

    Article  CAS  PubMed  Google Scholar 

  29. Jeener J, Meier BH, Bachmann P, Ernst RR (1979) J Chem Phys 71:4546–4553

    Google Scholar 

  30. Bertini I, Donaire A, Felli IC, Luchinat C, Rosato A (1996) Magn Reson Chem 34:948–950

    Article  CAS  Google Scholar 

  31. Allegrozzi M, Bertini I, Janik MBL, Lee Y-M, Liu G, Luchinat C (2000) J Am Chem Soc 122:4154–4161

    CAS  Google Scholar 

  32. Banci L, Bertini I, Bren KL, Cremonini MA, Gray HB, Luchinat C, Turano P (1996) J Biol Inorg Chem 1:117–126

    CAS  Google Scholar 

  33. Shokhirev NV, Walker FA (1998) J Biol Inorg Chem 3:581–594

    CAS  Google Scholar 

  34. Banci L, Bertini I, Gray HB, Luchinat C, Reddig T, Rosato A, Turano P (1997) Biochemistry 36:9867–9877

    PubMed  Google Scholar 

  35. Banci L, Bertini I, Bren KL, Gray HB, Sompornpisut P, Turano P (1997) Biochemistry 36:8992–9001

    CAS  PubMed  Google Scholar 

  36. Bertini I, Luchinat C, Parigi G, Walker FA (1999) J Biol Inorg Chem 4:515–519

    CAS  PubMed  Google Scholar 

  37. Arnesano F, Banci L, Bertini I, Karin van der Wetering, Czisch M, Kaptein R (2000) J Biomol NMR 17:295–304

    Article  CAS  PubMed  Google Scholar 

  38. Chou JJ, Li S, Klee CB, Bax A (2001) Nat Struct Biol 8:990–997

    Article  CAS  PubMed  Google Scholar 

  39. Bertini I, Kowalewski J, Luchinat C, Parigi G (2001) J Magn Reson 152:103–108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Murst ex 40%, Italy, the European Union, contracts HPRI-CT-2001-00147 and QLG2-CT-1999-01003, CNR, Italy, contract 99.00950.CT03, and the United States Department of Energy (grant no. DE-FG03-02ER15359 to Caltech).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivano Bertini.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertini, I., Faraone-Mennella, J., Gray, H.B. et al. NMR-validated structural model for oxidized Rhodopseudomonas palustris cytochrome c 556 . J Biol Inorg Chem 9, 224–230 (2004). https://doi.org/10.1007/s00775-003-0511-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-003-0511-2

Keywords

Navigation