Skip to main content
Log in

Effect of phosphate on bacterioferritin-catalysed iron(II) oxidation

  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The iron(III) mineral cores of bacterioferritins (BFRs), as isolated, contain a significant component of phosphate, with an iron-to-phosphate ratio approaching 1:1 in some cases. In order to better understand the in vivo core-formation process, the effect of phosphate on in vitro core formation in Escherichia coli BFR was investigated. Iron cores reconstituted in the presence of phosphate were found to have iron-to-phosphate ratios similar to those of native cores, and possessed electron paramagnetic resonance properties characteristic of the phosphate-rich core. Phosphate did not affect the stoichiometry of the initial iron(II) oxidation reaction that takes place at the intrasubunit dinuclear iron-binding sites (phase 2 of core formation), but did increase the rate of oxidation. Phosphate had a more significant effect on subsequent core formation (the phase 3 reaction), increasing the rate up to five-fold at pH 6.5 and 25 °C. The dependence of the phase 3 rate on phosphate was complex, being greatest at low phosphate and gradually decreasing until the point of saturation at ~2 mM phosphate (for iron(II) concentrations <200 μM). Phosphate caused a significant decrease in the absorption properties of both phase 2 and phase 3 products, and the phosphate dependence of the latter mirrored the observed rate dependence, suggesting that distinct iron(III)-phosphate species are formed at different phosphate concentrations. The effect of phosphate on absorption properties enabled the observation of previously undetected events in the phase 2 to phase 3 transition period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a, b
Fig. 3a, b
Fig. 4a–d
Fig. 5a, b
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BFR:

Bacterioferritin

EcBFR:

Escherichia coli BFR

PaBFR:

Pseudomonas aeruginosa BFR

AvBFR:

Azotobacter vinelandii BFR

ITPG:

Isopropyl β-d-thiogalactopyranoside

MES:

2-(N-morpholino)-ethanesulfonic acid

References

  1. Harrison PM, Arosio P (1996) Biochim Biophys Acta 1275:161–203

    CAS  PubMed  Google Scholar 

  2. Andrews SC (1998) Adv Microb Physiol 40:281–351

    CAS  PubMed  Google Scholar 

  3. Chasteen ND, Harrison PM (1999) J Struct Biol 126:182–194

    CAS  PubMed  Google Scholar 

  4. Ford GC, Harrison PM, Rice DW, Smith JM, Treffry A, White JL, Yariv J. (1984) Philos Trans R Soc Lond B Biol Sci 304:551–565

    CAS  PubMed  Google Scholar 

  5. Towe KM, Bradley WF (1967) J. Colloid Interface Sci 24:384–392

    CAS  Google Scholar 

  6. Fischbach FA, Gregory DW, Harrison PM, Hoy TG, Williams JM (1971) J. Ultrastruct Res 37:495–503

    CAS  Google Scholar 

  7. Powell AK (1998) Met Ions Biol Syst 35:515–561

    CAS  PubMed  Google Scholar 

  8. Michaelis L, Coryell, CD, Granick S (1943) J Biol Chem 28:329–336

    Google Scholar 

  9. Treffry A, Harrison PM (1978) Biochem J 171:313–320

    CAS  PubMed  Google Scholar 

  10. Rohrer JS, Islam QT, Watt GD, Sayers DE, Theil EC (1990) Biochemistry 29:259–264

    CAS  PubMed  Google Scholar 

  11. Huang H, Watt RK, Frankel RB, Watt GD (1993) Biochemistry 32:1681–1687

    CAS  PubMed  Google Scholar 

  12. Johnson JL, Cannon M, Watt RK, Frankel RB, Watt GD (1999) Biochemistry 38:6706–6713

    Article  CAS  PubMed  Google Scholar 

  13. Bauminger ER, Cohen SG, Dickson DPE, Levy A, Ofer S, Yariv J (1980) Biochim. Biophys Acta 623:237–242

    Article  CAS  Google Scholar 

  14. Moore GR, Mann S, Bannister JV (1986) J Inorg Biochem 28:329–336

    Article  CAS  PubMed  Google Scholar 

  15. Mann SJ, Bannister JV, Williams RJP (1986) J Mol Biol 188:225–232

    CAS  PubMed  Google Scholar 

  16. Treffry A, Harrison PM, Cleton MI, De Bruijn WC, Mann S (1987) J Inorg Biochem 31:1–6

    Article  CAS  PubMed  Google Scholar 

  17. Watt GD, Frankel RB, Jacobs D, Huang H. Papaefthymiou GC (1992) Biochemistry 31:5672–5679

    Google Scholar 

  18. Mann S, Williams JM, Treffry A, Harrison PM. (1987) J Mol Biol 198:405–416

    CAS  PubMed  Google Scholar 

  19. Cheng YG, Chasteen ND (1991) Biochemistry 30:2947–2953

    CAS  PubMed  Google Scholar 

  20. Cheesman MR, Le Brun NE, Kadir FHA, Thomson AJ, Moore GR, Andrews SC, Guest JR, Harrison PM, Smith JMA, Yewdall SJ (1993) Biochem J 292:47–56

    CAS  PubMed  Google Scholar 

  21. Frolow F, Kalb AJ, Yariv J (1994) Nat Struct Biol 1:453–460

    CAS  PubMed  Google Scholar 

  22. Le Brun NE, Andrews SC, Guest JR, Harrison PM, Moore GR, Thomson AJ (1995) Biochem J 312:385–392

    PubMed  Google Scholar 

  23. Carrondo MA (2003) EMBO J 22:1959–1968

    Article  CAS  PubMed  Google Scholar 

  24. Stiefel EI, Watt GD (1979) Nature 279:81–83

    CAS  PubMed  Google Scholar 

  25. Moore GR, Kadir FHA, Al-Massad FK, Le Brun NE, Thomson AJ, Greenwood C, Keen JN, Findlay JBC (1994) Biochem J 304:493–497

    CAS  PubMed  Google Scholar 

  26. Andrews SC, Le Brun NE, Barynin V, Thomson AJ, Moore GR, Guest JR, Harrison PM (1995) J Biol Chem 270:23268–23274

    Article  CAS  PubMed  Google Scholar 

  27. Le Brun NE, Wilson MT, Andrews SC, Harrison PM, Guest JR, Thomson AJ, Moore GR (1993) FEBS Lett 333:197–202

    Article  PubMed  Google Scholar 

  28. Le Brun NE, Thomson AJ, Moore GR (1997) Struct Bond 88:103–138

    Google Scholar 

  29. Le Brun NE, Keech AM, Mauk MR, Mauk AG, Andrews SC, Thomson AJ, Moore GR (1996) FEBS Lett 397:159–163

    Article  PubMed  Google Scholar 

  30. Yang X, Le Brun NE, Thomson AJ, Moore GR, Chasteen ND (2000) Biochemistry 39:4915–4923

    Article  CAS  PubMed  Google Scholar 

  31. Baaghil S, Thomson AJ, Moore GR, Le Brun NE (2002) J Chem Soc Dalton Trans 811–818

  32. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Anal Biochem 150:76–85

    PubMed  Google Scholar 

  33. Falk JE (1964) Porphyrins and metalloporphyrins. BBA Library, vol. 2. Elsevier, Amsterdam, pp 181–182

  34. Bauminger ER, Harrison PM, Hechel D, Nowik I, Treffry A (1991) Biochim Biophys Acta 1118:48–58

    CAS  PubMed  Google Scholar 

  35. Stookey LL (1970) Anal Chem 42:779–781

    CAS  Google Scholar 

  36. Altmann HJ, Furstenau E, Gielewski A, Scholz, L (1971) Z Anal Chem 256:274–276

    CAS  Google Scholar 

  37. Baaghil S, Lewin A, Spiro S., Moore GR, Le Brun NE (2003) Biochemistry 42:14047–14056

    Google Scholar 

  38. Cheesman MR, Kadir FHA, Al-Basseet J, Al-Massad F, Farrar J, Greenwood C, Thomson AJ, Moore GR (1992) Biochem J 286:361–367

    CAS  PubMed  Google Scholar 

  39. Le Brun NE (1993) PhD Thesis, University of East Anglia, Norwich, UK

  40. Boas JF, Troup GJ (1971) Biochim Biophys Acta 229:68–74

    Article  CAS  PubMed  Google Scholar 

  41. Weir MP, Peters TJ, Gibson JF (1985) Biochim Biophys Acta 828:298–305

    Article  CAS  PubMed  Google Scholar 

  42. Deighton N, Abu-Raqabah A, Rowland IJ, Symons MCR, Peters TJ, Ward RJ (1991) J Chem Soc Farad Trans 87:3193–3197

    CAS  Google Scholar 

  43. Yang X, Chen-Barrett Y, Arosio P, Chasteen ND (1998) Biochemistry 37:9743–9750

    Article  CAS  PubMed  Google Scholar 

  44. Sun S, Arosio P, Levi S, Chasteen ND (1993) Biochemistry 32:9362–9369

    CAS  PubMed  Google Scholar 

  45. Zhao G, Bou-Abdallah F, Arosio P, Levi S, Janus-Chandler C, Chasteen ND (2003) Biochemistry 42:3142–3150

    Article  CAS  PubMed  Google Scholar 

  46. Guex M, Peitsch MC (1997) Electrophoresis 18:2714–2723

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the BBSRC to G.R.M. and N.L.B. N.L.B. thanks the Royal Society for supporting his work on metals and metal cofactors in biology and H.A. thanks her family for financial support. The authors thank Dr. Myles Cheesman and Prof. Andrew Thomson for valuable assistance with EPR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick E. Le Brun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aitken-Rogers, H., Singleton, C., Lewin, A. et al. Effect of phosphate on bacterioferritin-catalysed iron(II) oxidation. J Biol Inorg Chem 9, 161–170 (2004). https://doi.org/10.1007/s00775-003-0504-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-003-0504-1

Keywords

Navigation