Skip to main content
Log in

Characterization of a [2Fe-2S] protein encoded in the iron-hydrogenase operon of Thermotoga maritima

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Thermotoga maritima grows optimally at 80 °C by fermenting carbohydrates to organic acids, CO2, and H2. The production of H2 is catalyzed by a cytoplasmic, heterotrimeric (αβγ) Fe-hydrogenase. This is encoded by three genes, hydC (γ), hydB (β) and hydA (α), organized within a single operon that contains five additional open reading frames (ORFs). The recombinant form of the first ORF of the operon, TM1420, was produced in Escherichia coli. It has a molecular mass of 8537±3 Da as determined by mass spectrometry, in agreement with the predicted amino acid sequence. Purified TM1420 is red in color, has a basic pI (8.8), and contains 1.9 Fe atoms/mol that are present as a single [2Fe-2S] cluster, as determined by UV-visible absorption and EPR spectroscopy. The protein contains five cysteine residues, but their arrangement is characteristic of a subunit or domain rather than of a ferredoxin-type protein. The reduction potential of the [2Fe-2S] cluster (−233 mV at pH 6.5 and 25 °C) is pH independent but decreases linearly with temperature to −296 mV (−1.15 mV/°C) at 80 °C. TM1420 is not reduced, in vitro, by the Fe-hydrogenase nor by a pyruvate ferredoxin oxidoreductase. The protein was unstable at 70 °C under anaerobic conditions with a half-life of ~30 min. The basic nature of TM1420, its instability at the growth temperature of T. maritima, and the unusual spacing of its cysteine residues suggest that this protein does not function as a ferredoxin-type electron carrier for the Fe-hydrogenase. Instead, TM1420 is more likely part of a thermostable multi-protein complex that is involved in metal cluster assembly of the hydrogenase holoenzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7A, B.

Similar content being viewed by others

Abbreviations

CHES:

2-(N-cyclohexylamino)-1-propanesulfonic acid

DTT:

dithiothreitol

EPPS:

N-(2-hydroxyethyl)piperazine-N'-(3-propanesulfonic acid)

EPR:

electron paramagnetic resonance

Fd:

ferredoxin

HEPES:

N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid)

ICP:

inductively coupled plasma emission spectroscopy

MES:

2-(N-morpholino)ethanesulfonic acid

ORF:

open reading frame

PCR:

polymerase chain reaction

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SHE:

standard hydrogen electrode

References

  1. Adams MWW (1990) Biochim Biophys Acta 1020:115–145

    CAS  PubMed  Google Scholar 

  2. Albracht SPJ (1994) Biochim Biophys Acta 1188:167–204

    CAS  PubMed  Google Scholar 

  3. Vignais PM, Billoud B, Meyer J (2001) FEMS Microbiol Rev 25:455–501

    CAS  PubMed  Google Scholar 

  4. Horner DS, Heil B, Happe T, Embley TM (2002) Trends Biochem Sci 27:148–153

    Article  CAS  PubMed  Google Scholar 

  5. Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) Science 282:1853–1858

    Article  CAS  PubMed  Google Scholar 

  6. Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Structure 7:13–23

    CAS  PubMed  Google Scholar 

  7. Schönheit P, Schäfer T (1995) World J Microbiol Biotech 11:26–57

    Google Scholar 

  8. Verhagen MFJM, O'Rourke T, Adams MWW (1999) Biochim Biophys Acta 1412:212–229

    Article  CAS  PubMed  Google Scholar 

  9. Verhagen MFJM, O'Rourke T, Menon AL, Adams MWW (2001) Biochim Biophys Acta 1505:209–219

    Article  CAS  PubMed  Google Scholar 

  10. Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Nature 399:323–329

    CAS  PubMed  Google Scholar 

  11. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  12. Laemmli UK (1970) Nature 227:680–685

    PubMed  Google Scholar 

  13. Goa J (1953) Scan J Clin Lab Invest 5:218–222

    CAS  Google Scholar 

  14. Bensadoun A, Weinstein D (1976) Anal Biochem 70:241–250

    PubMed  Google Scholar 

  15. Lovenberg W, Buchanan BB, Rabinowitz JC (1963) J Biol Chem 238:3899–3913

    CAS  Google Scholar 

  16. Brereton, PS, Verhagen MFJM, Zhou ZH, Adams MWW (1998) Biochemistry 37:7351–7362

    CAS  PubMed  Google Scholar 

  17. Menon AL, Hendrix H, Hutchins A, Verhagen MFJM, Adams, MWW (1998) Biochemistry 37:12838–12846

    Article  CAS  PubMed  Google Scholar 

  18. Matsubara H, Saeki K (1992) Adv Inorg Chem 38:223–280

    CAS  Google Scholar 

  19. Meyer J, Fujinaga J, Gaillard J, Lutz M (1994) Biochemistry 33:13642–13650

    CAS  PubMed  Google Scholar 

  20. Johnson MK (1994) In: King RB (ed) Encyclopedia of inorganic chemistry. Wiley, New York, pp 1896–1915

  21. Bertini I, Luchinat C, Provenzani A, Rosato A, Vasos PR (2002) Proteins Struct Funct Genet 46:110–127

    Article  CAS  PubMed  Google Scholar 

  22. Xu XM, Matsuno-Yagi A, Yagi T (1991) Biochemistry 30:8678–8684

    CAS  PubMed  Google Scholar 

  23. Weidner U, Geier S, Ptock A, Freidrich T, Leif H, Weiss H (1993) J Mol Biol 233:109–122

    Article  CAS  PubMed  Google Scholar 

  24. Yano T, Sled VD, Ohnishi T, Yagi T (1994) Biochemistry 33:494–499

    CAS  PubMed  Google Scholar 

  25. De Luca G, Asso M, Bélaïch J-P, Dermoun Z (1998) Biochemistry 37:2660–2665

    Article  PubMed  Google Scholar 

  26. Chatelet C, Meyer J (1999) J Biol Inorg Chem 4:311–317

    Article  CAS  PubMed  Google Scholar 

  27. Meyer J (2001) FEBS Lett 509:1–5

    Article  CAS  PubMed  Google Scholar 

  28. Chatelet C, Gaillard J, Pétillot Y, Louwagie M, Meyer J (1999) Biochem Biophys Res Commun 261:885–889

    Article  CAS  PubMed  Google Scholar 

  29. Yeh AP, Chatelet C, Soltis SM, Kuhn P, Meyer J, Rees DC (2000) J Mol Biol 300:587–595

    Article  CAS  PubMed  Google Scholar 

  30. Gollinelli M-P, Chatelet C, Duin EC, Johnson MK, Meyer J (1998) Biochemistry 37:10429–10437

    Article  PubMed  Google Scholar 

  31. Heering HA, Bulsink YBM, Hagen WR, Meyer TE (1995) Biochemistry 34:14675–14686

    CAS  PubMed  Google Scholar 

  32. Voordouw G, Hagen WR, Krüse-Wolters KM, van Berkel-Arts A, Veeger C (1987) Eur J Biochem 162:31-36

    Google Scholar 

  33. Atta M, Meyer J (2000) Biochim Biophys Acta 1476:368–371

    Article  CAS  PubMed  Google Scholar 

  34. Dean DR, Bolin JT, Zheng L (1993) J Bacteriol 175:6737–6744

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Ish Dhawan for assistance with the EPR and Marc Verhagen for many helpful discussions. This research was supported by a grant from the National Science Foundation (MCB 9904624).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. W. Adams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, G., Menon, A.L. & Adams, M.W.W. Characterization of a [2Fe-2S] protein encoded in the iron-hydrogenase operon of Thermotoga maritima . J Biol Inorg Chem 8, 469–474 (2003). https://doi.org/10.1007/s00775-002-0439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-002-0439-y

Keywords

Navigation