Skip to main content
Log in

The Cu(I)7 cluster in yeast copper thionein survives major shortening of the polypeptide backbone as deduced from electronic absorption, circular dichroism, luminescence and 1H NMR

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Owing to the frustrating experience of not being able to obtain crystalline yeast Cu(I)7 -metallothionein, thereby allowing elucidation of the X-ray structure, truncated forms were prepared to facilitate possible crystallization. The mobile remnants at either the N- or C-terminal end of the polypeptide chain were omitted. In parallel with the crystallization efforts, it was of interest to examine the degree to which the shortening of the protein portion might affect the intactness of the Cu(I)7 -thiolate cluster, thereby hampering their use as structural models for the intact protein. 1H two-dimensional NMR spectroscopy at 800 MHz was performed on the intact wild-type yeast Cu7-thionein and on two truncated forms (peptide−1–40 and peptide5–40). The NMR spectral data reveal, regardless of the length of the polypeptide chain, that the spin patterns were fully preserved with all relevant NOEs. The corresponding calculated structures were virtually identical. All other spectrometric properties, including circular dichroism, luminescence and electronic absorption, allowed the same conclusion. Minor differences were observed in the chiroptic and luminescent measurements. Interestingly, however, the resistance towards oxygen was progressively diminished with decreasing length of the polypeptide backbone. The half-life of the luminescence of the wild-type protein was 48 h while the luminescence of the shortest peptide levelled off within 24 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Byrd J, Berger RM, McMillin DR, Wright CF, Hamer D, Winge DR (1988) J Biol Chem 263:6688–6694

    CAS  PubMed  Google Scholar 

  2. Narula SS, Winge DR, Armitage IM (1993) Biochemistry 32:6773–6787

    CAS  PubMed  Google Scholar 

  3. Li YJ, Weser U (1992) Inorg Chem 31:5526–5533

    CAS  Google Scholar 

  4. Nielson KB, Winge DR (1984) J Biol Chem 259:4941–4946

    CAS  PubMed  Google Scholar 

  5. Stillman MJ, Law AY, Cai WH, Zelazowski AJ (1987) Experientia Suppl 52:203–211

    CAS  PubMed  Google Scholar 

  6. Romero-Isart N, Vasak M (2002) J Inorg Biochem 88:388–396

    Article  CAS  PubMed  Google Scholar 

  7. Bofill R, Capdevila M, Cols N, Atrian S, Gonzalez-Duarte P (2001) J Biol Inorg Chem 6:405–417

    Article  CAS  PubMed  Google Scholar 

  8. Bertini I, Hartmann HJ, Klein T, Liu G, Luchinat C, Weser U (2000) Eur J Biochem 267:1008–1018

    Article  CAS  PubMed  Google Scholar 

  9. Narula SS, Mehra RK, Winge DR, Armitage IM (1991) J Am Chem Soc 113:9354–9358

    CAS  Google Scholar 

  10. Peterson CW, Narula SS, Armitage IM (1996) FEBS Lett 379:85–93

    CAS  PubMed  Google Scholar 

  11. Winge DR, Nielson DB, Gray WR, Hamer DH (1985) J Biol Chem 260:14464–14470

    CAS  PubMed  Google Scholar 

  12. Weser U, Hartmann HJ (1991) Methods Enzymol 205:274–278

    CAS  PubMed  Google Scholar 

  13. Echner H, Voelter W (1988) Liebigs Ann Chem 1095–1097

  14. Macura S, Wüthrich K, Ernst RR (1982) J Magn Reson 47:351–357

    CAS  Google Scholar 

  15. Marion D, Wüthrich K (1983) Biochem Biophys Res Commun 113:967–974

    CAS  PubMed  Google Scholar 

  16. Eccles C, Güntert P, Billeter M, Wüthrich K (1991) J Biomol NMR 1:111–130

    PubMed  Google Scholar 

  17. Assfalg M, Bertini I, Turano P, Bruschi M, Durand MC, Giudici-Orticoni MT, Dolla A (2002) J Biomol NMR 22:107–122

    Article  CAS  PubMed  Google Scholar 

  18. Güntert P, Braun W, Wüthrich K (1991) J Mol Biol 217:517–530

    PubMed  Google Scholar 

  19. Güntert P, Mumenthaler C, Wüthrich K (1997) J Mol Biol 273:283–298

    PubMed  Google Scholar 

  20. Koradi R, Billeter M, Wüthrich K (1996) J Mol Graphics 14:51–55

    CAS  Google Scholar 

  21. Rupp H, Voelter W, Weser U (1975) Hoppe Seylers Z Physiol Chem 356:755–765

    CAS  PubMed  Google Scholar 

  22. Beltramini M, Lerch K (1983) Biochemistry 22:2043–2048

    CAS  PubMed  Google Scholar 

  23. Roschitzki B, Vasak M (2002) J Biol Inorg Chem 7:611–616

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The support of the European Community Access to Research Infrastructure action of the Improving Human Potential Programme (LSF user project no. 23) is gratefully acknowledged. Several encouraging and stimulating discussions with Prof. Ivano Bertini are warmly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Weser.

Additional information

B. Dolderer and C. Del Bianco both contributed substantially and equally to the present study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luchinat, C., Dolderer, B., Del Bianco, C. et al. The Cu(I)7 cluster in yeast copper thionein survives major shortening of the polypeptide backbone as deduced from electronic absorption, circular dichroism, luminescence and 1H NMR. J Biol Inorg Chem 8, 353–359 (2003). https://doi.org/10.1007/s00775-002-0423-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-002-0423-6

Keywords

Navigation