Skip to main content

Advertisement

Log in

Assessing the effects of probiotic supplementation, single strain versus mixed strains, on femoral mineral density and osteoblastic gene mRNA expression in rats

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Osteoporosis is a significant health concern characterized by weak and porous bones, particularly affecting menopausal women aged 50 and above, leading to increased risk of hip fractures and associated morbidity and mortality.

Materials and Methods

We conducted a study to assess the efficacy of single-strain versus mixed-strain probiotic supplementation on bone health using an ovariectomy (OVX) rat model of induced bone loss. The probiotics evaluated were Lactobacillus helveticus (L. helveticus), Bifidobacterium longum (B. longum), and a combination of both. Rats were divided into five groups: SHAM (Control negative), OVX (Control positive), OVX +L. helveticus, OVX + B. longum, and OVX + mixed L. helveticus and B. longum. Daily oral administration of probiotics at 10^8-10^9 CFU/mL began two weeks post-surgery and continued for 16 weeks.

Results

Both single-strain and mixed-strain probiotic supplementation upregulated expression of osteoblastic genes (BMP- 2, RUNX-2, OSX), increased serum osteocalcin (OC) levels, and improved bone formation parameters. Serum C-terminal telopeptide (CTX) levels and bone resorption parameters were reduced. However, the single-strain supplementation demonstrated superior efficacy compared to the mixed-strain approach.

Conclusion

Supplementation with B. longum and L. helveticus significantly reduces bone resorption and improves bone health in OVX rats, with single-strain supplementation showing greater efficacy compared to a mixed-strain combination. These findings highlight the potential of probiotics as a therapeutic intervention for osteoporosis, warranting further investigation in human studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aibar-Almazán A, Voltes-Martínez A, Castellote-Caballero Y et al (2022) Current status of the diagnosis and management of osteoporosis. Int J Mol Sci 23:9465

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dheeraj KN, Ronanki K, Kant R (2022) Osteoporosis: a narrative review of diagnosis and treatment. J Uttaranchal Orthop Assoc 1:1. https://doi.org/10.4103/juoa.juoa_1_22

    Article  Google Scholar 

  3. Salari N, Ghasemi H, Mohammadi L et al (2021) The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J Orthop Surg 16:609. https://doi.org/10.1186/s13018-021-02772-0

    Article  Google Scholar 

  4. McCabe LR, Irwin R, Schaefer L et al (2013) Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. FASEB J 27:951.4–951.4. https://doi.org/10.1096/fasebj.27.1_supplement.951.4

  5. Rizzoli R, Reginster J-Y, Boonen S et al (2011) Adverse reactions and drug–drug interactions in the management of women with postmenopausal osteoporosis. Calcif Tissue Int 89:91–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peacock M, Turner CH, Econs MJ, Foroud T (2002) Genetics of osteoporosis. Endocr Rev 23:303–326

    Article  CAS  PubMed  Google Scholar 

  7. Ralston SH, Uitterlinden AG (2010) Genetics of osteoporosis. Endocr Rev 31:629–662

    Article  CAS  PubMed  Google Scholar 

  8. Binkley NC, Suttie JW (1995) Vitamin K nutrition and osteoporosis. J Nutr 125:1812–1821

    Article  CAS  PubMed  Google Scholar 

  9. Bunker VW (1994) The role of nutrition in osteoporosis. Br J Biomed Sci 51:228–240

    CAS  PubMed  Google Scholar 

  10. Daly RM, Dalla Via J, Duckham RL et al (2019) Exercise for the prevention of osteoporosis in postmenopausal women: an evidence-based guide to the optimal prescription. Braz J Phys Ther 23:170–180

    Article  PubMed  Google Scholar 

  11. Christianson MS, Shen W (2013) Osteoporosis prevention and management: nonpharmacologic and lifestyle options. Clin Obstet Gynecol 56:703–710

    Article  PubMed  Google Scholar 

  12. Renuka SR, Kumar NA, Manoharan D, Naidu DK (2023) Probiotics: a review on microbiome that helps for better health–a dermatologist’s perspective. J Pharmacol Pharmacother 0976500X231175225

  13. Das T, Bhattacharyya S, Datta S (2023) Study of normal and pathogenic bacteria in medicinal probiotics. Int J Med Case Rep Rev BRS 9:56–65

  14. Billington EO, Mahajan A, Benham JL, Raman M (2023) Effects of probiotics on bone mineral density and bone turnover: a systematic review. Crit Rev Food Sci Nutr 63:4141–4152. https://doi.org/10.1080/10408398.2021.1998760

    Article  CAS  PubMed  Google Scholar 

  15. Stojanov S, Berlec A, Štrukelj B (2020) The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms 8:1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abenavoli L, Scarpellini E, Colica C et al (2019) Gut microbiota and obesity: a role for probiotics. Nutrients 11:2690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tao Y-W, Gu Y-L, Mao X-Q et al (2020) Effects of probiotics on type II diabetes mellitus: a meta-analysis. J Transl Med 18:1–11

    Google Scholar 

  18. Bock PM, Telo GH, Ramalho R et al (2021) The effect of probiotics, prebiotics or synbiotics on metabolic outcomes in individuals with diabetes: a systematic review and meta-analysis. Diabetologia 64:26–41

    Article  CAS  PubMed  Google Scholar 

  19. Jensen AP, Bjørnvad CR (2019) Clinical effect of probiotics in prevention or treatment of gastrointestinal disease in dogs: a systematic review. J Vet Intern Med 33:1849–1864

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chávarri M, Diez-Gutiérrez L, Marañón I et al (2022) The role of probiotics in nutritional health: probiotics as nutribiotics. In: Probiotics in the prevention and management of human diseases. Elsevier, Amsterdam, Netherlands, pp 397–415

  21. Cunningham M, Azcarate-Peril MA, Barnard A et al (2021) Shaping the future of probiotics and prebiotics. Trends Microbiol 29:667–685

    Article  CAS  PubMed  Google Scholar 

  22. Malmir H, Ejtahed H-S, Soroush A-R et al (2021) Probiotics as a new regulator for bone health: a systematic review and meta-analysis. Evid-Based Complement Altern Med ECAM 2021:3582989. https://doi.org/10.1155/2021/3582989

    Article  Google Scholar 

  23. Wang X, Zhang P, Zhang X (2021) Probiotics regulate gut microbiota: an effective method to improve immunity. Molecules 26:6076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maldonado Galdeano C, Cazorla SI, Lemme Dumit JM et al (2019) Beneficial effects of probiotic consumption on the immune system. Ann Nutr Metab 74:115–124

    Article  CAS  PubMed  Google Scholar 

  25. Raggatt LJ, Partridge NC (2010) Cellular and molecular mechanisms of bone remodeling*. J Biol Chem 285:25103–25108. https://doi.org/10.1074/jbc.R109.041087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dirckx N, Van Hul M, Maes C (2013) Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration. Birth Defects Res Part C Embryo Today Rev 99:170–191. https://doi.org/10.1002/bdrc.21047

    Article  CAS  Google Scholar 

  27. Cheng C-H, Chen L-R, Chen K-H (2022) Osteoporosis due to hormone imbalance: an overview of the effects of estrogen deficiency and glucocorticoid overuse on bone turnover. Int J Mol Sci 23:1376. https://doi.org/10.3390/ijms23031376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duan P, Bonewald L (2016) The role of the Wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth. Int J Biochem Cell Biol 77:23–29. https://doi.org/10.1016/j.biocel.2016.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kearns AE, Khosla S, Kostenuik PJ (2008) Receptor activator of nuclear factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 29:155–192. https://doi.org/10.1210/er.2007-0014

    Article  CAS  PubMed  Google Scholar 

  30. Montazeri-Najafabady N, Ghasemi Y, Dabbaghmanesh MH et al (2019) Supportive role of probiotic strains in protecting rats from ovariectomy-induced cortical bone loss. Probiotics Antimicrob Proteins 11:1145–1154

    Article  CAS  PubMed  Google Scholar 

  31. Park D, Yoon J-E, Choi B et al (2023) Complex extract of Polygonatum sibiricum and Nelumbinis semen improves menopause symptoms via regulation of estrogen receptor beta in an ovariectomized rat model. Nutrients 15:2443. https://doi.org/10.3390/nu15112443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kinder JM, Then JE, Hansel PM et al (2014) Long-term repeated daily use of intragastric gavage hinders induction of oral tolerance to ovalbumin in mice. Comp Med 64:369–376

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Parvaneh K, Ebrahimi M, Sabran MR et al (2015) Probiotics (Bifidobacterium longum) increase bone mass density and upregulate Sparc and Bmp-2 genes in rats with bone loss resulting from ovariectomy. BioMed Res Int 2015:897639

  34. Parvaneh M, Karimi G, Jamaluddin R et al (2018) Lactobacillus helveticus (ATCC 27558) upregulates Runx2 and Bmp2 and modulates bone mineral density in ovariectomy-induced bone loss rats. Clin Interv Aging 13:1555–1564. https://doi.org/10.2147/CIA.S169223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chiang S-S, Pan T-M (2011) Antiosteoporotic effects of lactobacillus-fermented soy skim milk on bone mineral density and the microstructure of femoral bone in ovariectomized mice. J Agric Food Chem 59:7734–7742. https://doi.org/10.1021/jf2013716

    Article  CAS  PubMed  Google Scholar 

  36. Finamore A, Roselli M, Donini L et al (2019) Supplementation with Bifidobacterium longum Bar33 and Lactobacillus helveticus Bar13 mixture improves immunity in elderly humans (over 75 years) and aged mice. Nutrition 63–64:184–192. https://doi.org/10.1016/j.nut.2019.02.005

    Article  PubMed  Google Scholar 

  37. Harrison E, Adjei A, Ameho C et al (1998) The effect of soybean protein on bone loss in a rat model of postmenopausal osteoporosis. J Nutr Sci Vitaminol (Tokyo) 44:257–268. https://doi.org/10.3177/jnsv.44.257

    Article  CAS  PubMed  Google Scholar 

  38. Freere RH, Weibel ER (1967) Stereologic techniques in microscopy. J R Microsc Soc 87:25–34. https://doi.org/10.1111/j.1365-2818.1967.tb04489.x

    Article  Google Scholar 

  39. Baldock P, Morris H, Need A et al (1998) Variation in the short-term changes in bone cell activity in three regions of the distal femur immediately following ovariectomy. J Bone Miner Res 13:1451–1457. https://doi.org/10.1359/jbmr.1998.13.9.1451

    Article  CAS  PubMed  Google Scholar 

  40. Wilfinger WW, Mackey K, Chomczynski P (1997) Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. Biotechniques 22:478–481. https://doi.org/10.2144/97223st01

    Article  Google Scholar 

  41. Hemarajata P, Versalovic J (2013) Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol 6:39–51. https://doi.org/10.1177/1756283X12459294

    Article  CAS  Google Scholar 

  42. Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain–gut–enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6. https://doi.org/10.1038/nrgastro.2009.35

  43. Lyu Z, Hu Y, Guo Y, Liu D (2023) Modulation of bone remodeling by the gut microbiota: a new therapy for osteoporosis. Bone Res 11:1–15. https://doi.org/10.1038/s41413-023-00264-x

    Article  CAS  Google Scholar 

  44. Li C, Pi G, Li F (2021) The role of intestinal flora in the regulation of bone homeostasis. Front Cell Infect Microbiol 11:1–16

  45. Clowes JA, Riggs BL, Khosla S (2005) The role of the immune system in the pathophysiology of osteoporosis. Immunol Rev 208:207–227. https://doi.org/10.1111/j.0105-2896.2005.00334.x

    Article  CAS  PubMed  Google Scholar 

  46. Liu Y, Wang J, Wu C (2022) Modulation of gut microbiota and immune system by probiotics, pre-biotics, and post-biotics. Front Nutr 8:634897

    Article  PubMed  PubMed Central  Google Scholar 

  47. Parvaneh K, Jamaluddin R, Karimi G, Erfani R (2014) Effect of probiotics supplementation on bone mineral content and bone mass density. Sci World J 2014:e595962. https://doi.org/10.1155/2014/595962

    Article  Google Scholar 

  48. Muhammad SI, Ismail M, Mahmud RB et al (2013) Germinated brown rice and its bioactives modulate the activity of uterine cells in oophorectomised rats as evidenced by gross cytohistological and immunohistochemical changes. BMC Complement Altern Med 13:198. https://doi.org/10.1186/1472-6882-13-198

    Article  PubMed  PubMed Central  Google Scholar 

  49. Goda T, Kishi K, Ezawa I, Takase S (1998) The maltitol-induced increase in intestinal calcium transport increases the calcium content and breaking force of femoral bone in weanling rats. J Nutr 128:2028–2031. https://doi.org/10.1093/jn/128.11.2028

    Article  CAS  PubMed  Google Scholar 

  50. Rosen HN, Moses AC, Garber J et al (2000) Serum CTX: a new marker of bone resorption that shows treatment effect more often than other markers because of low coefficient of variability and large changes with bisphosphonate therapy. Calcif Tissue Int 66:100–103. https://doi.org/10.1007/pl00005830

    Article  CAS  PubMed  Google Scholar 

  51. Romero Barco CM, Manrique Arija S, Rodríguez Pérez M (2012) Biochemical markers in osteoporosis: usefulness in clinical practice. Reumatol Clin 8:149–152. https://doi.org/10.1016/j.reuma.2011.05.010

    Article  PubMed  Google Scholar 

  52. Garrett IR, Chen D, Gutierrez G et al (2003) Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro. J Clin Invest 111:1771–1782. https://doi.org/10.1172/JCI16198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Barrère F, van Blitterswijk CA, de Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomedicine 1:317–332

    PubMed  PubMed Central  Google Scholar 

  54. Kuwata F, Yao KL, Sodek J et al (1985) Identification of pre-osteonectin produced by cell-free translation of fetal porcine calvarial mRNA. J Biol Chem 260:6993–6998

    Article  CAS  PubMed  Google Scholar 

  55. Huynh MH, Sage EH, Ringuette M (1999) A calcium-binding motif in SPARC/osteonectin inhibits chordomesoderm cell migration during Xenopus laevis gastrulation: evidence of counter-adhesive activity in vivo. Dev Growth Differ 41:407–418. https://doi.org/10.1046/j.1440-169x.1999.00443.x

    Article  CAS  PubMed  Google Scholar 

  56. UsmanHosono A (1999) Viability of Lactobacillus gasseri and its cholesterol-binding and antimutagenic activities during subsequent refrigerated storage in nonfermented milk. J Dairy Sci 82:2536–2542. https://doi.org/10.3168/jds.S0022-0302(99)75507-4

    Article  Google Scholar 

  57. Narayanan A, Srinaath N, Rohini M, Selvamurugan N (2019) Regulation of Runx2 by MicroRNAs in osteoblast differentiation. Life Sci 232:116676. https://doi.org/10.1016/j.lfs.2019.116676

    Article  CAS  PubMed  Google Scholar 

  58. Liu Q, Li M, Wang S, et al (2020) Recent advances of Osterix transcription factor in osteoblast differentiation and bone formation. Front Cell Dev Biol 8:601224

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bolamperti S, Villa I, Rubinacci A (2022) Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Res 10:1–19. https://doi.org/10.1038/s41413-022-00219-8

    Article  CAS  Google Scholar 

  60. Karimi G, Jamaluddin R, Mohtarrudin N et al (2017) Single-species versus dual-species probiotic supplementation as an emerging therapeutic strategy for obesity. Nutr Metab Cardiovasc Dis NMCD 27:910–918. https://doi.org/10.1016/j.numecd.2017.06.020

    Article  CAS  PubMed  Google Scholar 

  61. McFarland LV (2021) Efficacy of single-strain probiotics versus multi-strain mixtures: systematic review of strain and disease specificity. Dig Dis Sci 66:694–704. https://doi.org/10.1007/s10620-020-06244-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Faculty of Medicine and Health Sciences at Universiti Putra Malaysia (UPM), the Biochemistry and Nutrition Laboratories, and the Tissue Engineering Center at University Kebangsaan Malaysia (UKM) are all to be thanked by the authors for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Redzwan Sabran.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest forthe publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvaneh, M., Jamaluddin, R., Ebrahimi, M. et al. Assessing the effects of probiotic supplementation, single strain versus mixed strains, on femoral mineral density and osteoblastic gene mRNA expression in rats. J Bone Miner Metab 42, 290–301 (2024). https://doi.org/10.1007/s00774-024-01512-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-024-01512-8

Keywords

Navigation