Skip to main content

Advertisement

Log in

Sex-specific association of serum dehydroepiandrosterone and its sulfate levels with osteoporosis in type 2 diabetes

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

This study is to investigate the relation between serum dehydroepiandrosterone (DHEA) and its sulfate (DHEAS) levels and the risk of osteoporosis in patients with T2DM.

Materials and Methods

This cross-sectional study involved 938 hospitalized patients with T2DM. Linear regression models were used to explore the relationship between DHEA and DHEAS and the BMD at different skeletal sites. Multinominal logistic regression models and the restricted cubic spline (RCS) were used to evaluate the associations of DHEA and DHEAS with the risks of osteopenia and/or osteoporosis.

Results

In postmenopausal women with T2DM, after adjustment for confounders including testosterone and estradiol, DHEA showed a significant positive correlation with lumbar spine BMD (P = 0.013). Moreover, DHEAS exhibited significant positive correlations with BMD at three skeletal sites: including femoral neck, total hip, and lumbar spine (all P < 0.05). Low DHEA and DHEAS levels were associated with increased risk of osteopenia and/or osteoporosis (all P < 0.05) and the risk of osteoporosis gradually decreased with increasing DHEAS levels (P overall = 0.018, P-nonlinear = 0.559). However, DHEA and DHEAS levels in men over the age of 50 with T2DM were not associated with any of above outcomes.

Conclusion

In patients with T2DM, independent of testosterone and estradiol, higher DHEA and DHEAS levels are associated with higher BMD and lower risk of osteopenia/osteoporosis in postmenopausal women but not men over the age of 50.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ward JL, Azzopardi PS, Francis KL et al (2021) Global, regional, and national mortality among young people aged 10–24 years, 1950–2019: a systematic analysis for the global burden of disease study 2019. The Lancet 398:1593–1618

    Article  Google Scholar 

  2. Hofbauer LC, Busse B, Eastell R et al (2022) Bone fragility in diabetes: novel concepts and clinical implications. Lancet Diabetes Endocrinol 10:207–220

    Article  PubMed  Google Scholar 

  3. Behanova M, Haschka J, Zwerina J et al (2021) The doubled burden of diabetic bone disease: hip fracture and post-hip fracture mortality. Eur J Endocrinol 184:627–636

    Article  CAS  PubMed  Google Scholar 

  4. Kameda W, Daimon M, Oizumi T et al (2005) Association of decrease in serum dehydroepiandrosterone sulfate levels with the progression to type 2 diabetes in men of a Japanese population: the fungata study. Metabolism 54:669–676

    Article  CAS  PubMed  Google Scholar 

  5. Brahimaj A, Muka T, Kavousi M et al (2017) Serum dehydroepiandrosterone levels are associated with lower risk of type 2 diabetes: the rotterdam study. Diabetologia 60:98–106

    Article  CAS  PubMed  Google Scholar 

  6. Liu L, Wang M, Yang X et al (2013) Fasting serum lipid and dehydroepiandrosterone sulfate as important metabolites for detecting isolated postchallenge diabetes: serum metabolomics via ultra-high-performance LC-MS. Clin Chem 59:1338–1348

    Article  CAS  PubMed  Google Scholar 

  7. Ghebre MA, Hart DJ, Hakim AJ et al (2011) Association between DHEAS and bone loss in postmenopausal women: a 15-year longitudinal population-based study. Calcif Tissue Int 89:295–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Szathmári M, Szũcs J, Fehér T et al (1994) Dehydroepiandrosterone sulphate and bone mineral density. Osteoporos Int 4:84–88

    Article  PubMed  Google Scholar 

  9. Tok EC, Ertunc D, Oz U et al (2004) The effect of circulating androgens on bone mineral density in postmenopausal women. Maturitas 48:235–242

    Article  CAS  PubMed  Google Scholar 

  10. Lambrinoudaki I, Christodoulakos G, Aravantinos L et al (2005) Endogenous sex steroids and bone mineral density in healthy greek postmenopausal women. J Bone Miner Metab 24:65–71

    Article  Google Scholar 

  11. Murphy S, Khaw K-T, Sneyd MJ et al (1992) Endogenous sex hormones and bone mineral density among community-based postmenopausal women. Postgrad Med J 68:908–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Z̆ofková I, Bahbouh R, Hill M (2000) The pathophysiological implications of circulating androgens on bone mineral density in a normal female population. Steroids 65:857–861

    Article  PubMed  Google Scholar 

  13. Hosoda H, Fukui M, Nakayama I et al (2008) Bone mass and bone resorption in postmenopausal women with type 2 diabetes mellitus. Metabolism 57:940–945

    Article  CAS  PubMed  Google Scholar 

  14. Leslie WD, Aubry-rozier B, Lamy O et al (2013) TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab 98:602–609

    Article  CAS  PubMed  Google Scholar 

  15. Society C D (2021) Guideline for the prevention and treatment of type 2 diabetes mellitus in China. International Journal of Endocrinology and Metabolism, Chinese Medical Journals Publishing House Co. Ltd 41:482–548

    Google Scholar 

  16. Hypertension W G of 2018 C G for the M of, League C H, Cardiology C S of (2019) 2018 Chinese guidelines for the management of hypertension. Chinese Journal of Cardiovascular Medicine, Chinese Medical Journals Publishing House Co. Ltd 24:24–56

    Google Scholar 

  17. Adults J committee issued C guideline for the management of dyslipidemia in (2016) 2016 Chinese guideline for the management of dyslipidemia in adults. Chinese Journal of Cardiology, Chinese Medical Journals Publishing House Co Ltd 44:833–853

    Google Scholar 

  18. Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604

    Article  PubMed  PubMed Central  Google Scholar 

  19. Takahashi TA, Johnson KM (2015) Menopause. Med Clin North Am 99:521–534

    Article  PubMed  Google Scholar 

  20. Wang Y, Tao M, Cheng W et al (2012) Dehydroepiandrosterone indirectly inhibits human osteoclastic resorption via activating osteoblastic viability by the MAPK pathway. Chin Med J 125:1230–1235

    CAS  PubMed  Google Scholar 

  21. Qiu X, Gui Y, Xu Y et al (2015) DHEA promotes osteoblast differentiation by regulating the expression of osteoblast-related genes and Foxp3(+) regulatory T cells. Biosci Trends 9:307–314

    Article  CAS  PubMed  Google Scholar 

  22. Zhang N, Gui Y, Qiu X et al (2016) DHEA prevents bone loss by suppressing the expansion of CD4(+) T cells and TNFa production in the OVX-mouse model for postmenopausal osteoporosis. Biosci Trends 10:277–287

    Article  CAS  PubMed  Google Scholar 

  23. Yokomoto-Umakoshi M, Umakoshi H, Iwahashi N et al (2021) Protective role of DHEAS in age-related changes in bone mass and fracture risk. J Clin Endocrinol Metab 106:e4580–e4592

    Article  PubMed  Google Scholar 

  24. Nunes E, Gallardo E, Morgado-Nunes S et al (2023) Steroid hormone levels and bone mineral density in women over 65 years of age. Sci Rep 13:4925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Osmanaǧaoǧlu MA, Okumuş B, Osmanaǧaoǧlu T et al (2004) The relationship between serum dehydroepiandrosterone sulfate concentration and bone mineral density, lipids, and hormone replacement therapy in premenopausal and postmenopausal women. Journal of Women’s Health 13:993–999

    Article  PubMed  Google Scholar 

  26. Quester J, Nethander M, Eriksson A et al (2022) Endogenous DHEAS is causally linked with lumbar spine bone mineral density and forearm fractures in women. J Clin Endocrinol Metab 107:e2080–e2086

    Article  PubMed  Google Scholar 

  27. Labrie F, Diamond P, Cusan L et al (1997) Effect of 12-month dehydroepiandrosterone replacement therapy on bone, vagina, and endometrium in postmenopausal women. J Clin Endocrinol Metab 82:3498–3505

    Article  CAS  PubMed  Google Scholar 

  28. Nair KS, Rizza RA, O’brien P et al (2006) DHEA in elderly women and DHEA or testosterone in elderly men. N Engl J Med 355:1647–1659

    Article  CAS  PubMed  Google Scholar 

  29. Weiss EP, Shah K, Fontana L et al (2009) Dehydroepiandrosterone replacement therapy in older adults: 1- and 2-y effects on bone. Am J Clin Nutr 89:1459–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Von Mühlen D, Laughlin GA, Kritz-Silverstein D et al (2008) Effect of dehydroepiandrosterone supplementation on bone mineral density, bone markers, and body composition in older adults: the DAWN trial. Osteoporos Int 19:699–707

    Article  Google Scholar 

  31. Jankowski CM, Gozansky WS, Schwartz RS et al (2006) Effects of dehydroepiandrosterone replacement therapy on bone mineral density in older adults: a randomized, controlled trial. J Clin Endocrinol Metab 91:2986–2993

    Article  CAS  PubMed  Google Scholar 

  32. Baulieu E-E, Thomas G, Legrain S et al (2000) Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: contribution of the DHEAge study to a sociobiomedical issue. Proc Natl Acad Sci 97:4279–4284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jankowski CM, Wolfe P, Schmiege SJ et al (2019) Sex-specific effects of dehydroepiandrosterone (DHEA) on bone mineral density and body composition: a pooled analysis of four clinical trials. Clin Endocrinol 90:293–300

    Article  CAS  Google Scholar 

  34. Longcope C (1996) Dehydroepiandrosterone metabolism. J Endocrinol 150:S125-127

    CAS  PubMed  Google Scholar 

  35. Khosla S, Melton LJ, Atkinson EJ et al (1998) Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab 83:2266–2274

    CAS  PubMed  Google Scholar 

  36. Lee D, Kim H, Ahn SH et al (2015) The association between serum dehydroepiandrosterone sulphate (DHEA-S) level and bone mineral density in Korean men. Clin Endocrinol 83:173–179

    Article  CAS  Google Scholar 

  37. Ohlsson C, Nethander M, Kindmark A et al (2017) Low serum DHEAS predicts increased fracture risk in older men: the mros sweden study. J Bone Miner Res 32:1607–1614

    Article  CAS  PubMed  Google Scholar 

  38. Barrett-Connor E, Kritz-Silverstein D, Edelstein SL (1993) A Prospective study of dehydroepiandrosterone sulfate (DHEAS) and bone mineral density in older men and women. Am J Epidemiol 137:201–206

    Article  CAS  PubMed  Google Scholar 

  39. Greendale GA, Edelstein S, Barrett-Connor E (1997) Endogenous sex steroids and bone mineral density in older women and men: the rancho bernardo study. J Bone Miner Res 12:1833–1843

    Article  CAS  PubMed  Google Scholar 

  40. Slemenda CW, Longcope C, Zhou L et al (1997) Sex steroids and bone mass in older men. Positive associations with serum estrogens and negative associations with androgens. J Clin Investig 100:1755–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morales AJ, Haubrich RH, Hwang JY et al (1998) The effect of six months treatment with a 100 mg daily dose of dehydroepiandrosterone (DHEA) on circulating sex steroids, body composition and muscle strength in age-advanced men and women. Clin Endocrinol 49:421–432

    Article  CAS  Google Scholar 

  42. Labrie F (2010) DHEA, important source of sex steroids in men and even more in women. Neuroendocrinology—Pathological Situations and Diseases 182:97–148

    Article  CAS  Google Scholar 

  43. Labrie F (2015) All sex steroids are made intracellularly in peripheral tissues by the mechanisms of intracrinology after menopause. J Steroid Biochem Mol Biol 145:133–138

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (grant numbers 2019YFA0802502 and 2022YFE0131400); we acknowledge the support of the National Natural Science Foundation of China (grant numbers 81830025 and 82220108014), Tianjin Key Medical Discipline (Specialty) Construction Project (grant number TJYXZDXK-030A), and Major Project of Tianjin Municipal Science and Technology Bureau (grant number 21ZXJBSY00060).

Author information

Authors and Affiliations

Authors

Contributions

SL performed the study, did statistical analysis, and wrote the manuscript. WL and LC did statistical analysis, and wrote the manuscript. JW and SC participated in the study data collection. XZ performed the study, did statistical analysis. QH and ML provided funding support, designed the study, and reviewed the manuscript. All authors gave final approval and agree to be accountable for all aspects of the work ensuring integrity and accuracy.

Corresponding authors

Correspondence to Xinxin Zhang, Qing He or Ming Liu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the institutional Review Board of Tianjin Medical University General Hospital (approval number: IRB2020-YX-027-01).

Informed consent

Due to the extraction of all patient data from the hospital’s electronic medical records and the anonymization of participants' identities, the study waived the requirement for informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 19 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Li, W., Chang, L. et al. Sex-specific association of serum dehydroepiandrosterone and its sulfate levels with osteoporosis in type 2 diabetes. J Bone Miner Metab 42, 361–371 (2024). https://doi.org/10.1007/s00774-024-01511-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-024-01511-9

Keywords

Navigation