Skip to main content

Advertisement

Log in

Association between walking speed and calcaneus stiffness index in older adults

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

The aim here is to examine the association between objectively measured usual walking speed (UWS) and bone status in community-dwelling older Chinese.

Materials and methods

This is a cross-sectional study of a population of 1528 adults (817 females, mean age 68.5 ± 5.3; 711 males, mean age 69.1 ± 5.2) aged 60–79, living in communities in Shanghai. Walking speed was assessed using a 4-m walk test at a usual-pace walking speed a walking speed at which the subject felt relaxed—and bone status measured by quantitative ultrasound (QUS). The health-related characteristics of participants include family background, physical activity level, chronic disease, smoking and alcohol consumption, frequency of falls, vitamin intake, and hormone therapy.

Results

Multiple linear regression is used to analyses any association between UWS and bone status, adjusting for confounding factors showing a significant association between faster UWS and a higher calcaneal stiffness index (SI) (p < 0.01). Comparing the lowest quartile of the data set with the highest at UWS, a high SI is achieved with 5.34 (95% CI = 3.22, 7.46) (p < 0.01), after adjusting for confounders. An increase of 1 dm/s was associated with a 0.91 (95% CI = 0.53, 1.29) increase in SI. This relationship for most subgroups is consistent.

Conclusion

Our findings suggest that UWS can be a sensitive indicator of calcaneal bone loss among an older population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Because of the nature of this research, participants of this study did not agree to the public sharing of their data, and so supporting data are not available.

Abbreviations

BUA:

Broadband ultrasound attenuation

BMD:

Bone mineral density

BMI:

Body mass index

MVPA:

Moderate-vigorous physical activity

QUS:

Quantitative ultrasonography

SI:

Stiffness index

SOS:

Speed of sound

UWS:

Usual walking speed

VIF:

Variance inflation factor

References

  1. CHP Foundation (2009) Editorial board of osteoporosis prevention and treatment (China White Paper). Chin J Health Manag 3:148–154. https://doi.org/10.3760/cma.j.issn.1674-0815.2009.03.006

    Article  Google Scholar 

  2. Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group Osteoporos Int 4:368–381. https://doi.org/10.1007/BF01622200

    Article  CAS  Google Scholar 

  3. NIH Consensus Development Panel on Osteoporosis Prevention DAT (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795. https://doi.org/10.1001/jama.285.6.785

    Article  Google Scholar 

  4. World Health Organization (2022) Falls [EB/OL]. https://www.who.int/news-room/fact-sheets/detail/falls. Accessed Oct 25 2022

  5. United Nations (2022) The 2022 revision of world population prospects [EB/OL]. https://population.un.org/wpp/. Accessed Oct 25 2022

  6. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, Lindsay R (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25:2359–2381. https://doi.org/10.1007/s00198-014-2794-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Caplliure-Llopis J, Escrivá D, Navarro-Illana E, Benlloch M, de la Rubia Ortí JE, Barrios C (2022) Bone quality in patients with parkinson’s disease determined by quantitative ultrasound (QUS) of the calcaneus: influence of sex differences. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph19052804

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bauer DC, Ewing SK, Cauley JA, Ensrud KE, Cummings SR, Orwoll ES (2007) Quantitative ultrasound predicts hip and non-spine fracture in men: the MrOS study. Osteoporos Int 18:771–777. https://doi.org/10.1007/s00198-006-0317-5

    Article  CAS  PubMed  Google Scholar 

  9. Boonen S, Nicholson P (1998) Assessment of femoral bone fragility and fracture risk by ultrasonic measurements at the calcaneus. Age Ageing 27:231–237. https://doi.org/10.1093/ageing/27.2.231

    Article  CAS  PubMed  Google Scholar 

  10. Turner CH, Peacock M, Timmerman L, Neal JM, Johnson CC Jr (1995) Calcaneal ultrasonic measurements discriminate hip fracture independently of bone mass. Osteoporos Int 5:130–135. https://doi.org/10.1007/BF01623314

    Article  CAS  PubMed  Google Scholar 

  11. Hannan MT, Felson DT, Dawson-Hughes B, Tucker KL, Cupples LA, Wilson PW, Kiel DP (2000) Risk factors for longitudinal bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res 15:710–720. https://doi.org/10.1359/jbmr.2000.15.4.710

    Article  CAS  Google Scholar 

  12. Boskey AL, Coleman R (2010) Aging and bone. J Dent Res 89:1333–1348. https://doi.org/10.1177/0022034510377791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chilibeck PD, Sale DG, Webber CE (1995) Exercise and bone mineral density. Sports Med 19:103–122. https://doi.org/10.2165/00007256-199519020-00003

    Article  CAS  PubMed  Google Scholar 

  14. Daly RM, Ahlborg HG, Ringsberg K, Gardsell P, Sernbo I, Karlsson MK (2008) Association between changes in habitual physical activity and changes in bone density, muscle strength, and functional performance in elderly men and women. J Am Geriatr Soc 56:2252–2260. https://doi.org/10.1111/j.1532-5415.2008.02039.x

    Article  PubMed  Google Scholar 

  15. Santos L, Elliott-Sale KJ, Sale C (2017) Exercise and bone health across the lifespan. Biogerontology 18:931–946. https://doi.org/10.1007/s10522-017-9732-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fritz S, Lusardi M (2009) White paper: “walking speed: the sixth vital sign.” J Geriatr Phys Ther 32:46–49

    Article  PubMed  Google Scholar 

  17. Allen NE, Sherrington C, Canning CG, Fung VS (2010) Reduced muscle power is associated with slower walking velocity and falls in people with Parkinson’s disease. Parkinsonism Relat Disord 16:261–264. https://doi.org/10.1016/j.parkreldis.2009.12.011

    Article  CAS  PubMed  Google Scholar 

  18. Hayes S, Forbes JF, Celis-Morales C, Anderson J, Ferguson L, Gill JMR, Gray S, Hastie C, Iliodromoti S, Lyall D, Pellicori P, Sattar N, Welsh CE, Pell J (2020) Association between walking pace and stroke incidence: findings from the UK biobank prospective cohort study. Stroke 51:1388–1395. https://doi.org/10.1161/STROKEAHA.119.028064

    Article  PubMed  Google Scholar 

  19. Perera S, Patel KV, Rosano C, Rubin SM, Satterfield S, Harris T, Ensrud K, Orwoll E, Lee CG, Chandler JM, Newman AB, Cauley JA, Guralnik JM, Ferrucci L, Studenski SA (2016) Gait speed predicts incident disability: a pooled analysis. J Gerontol a Biol Sci Med Sci 71:63–71. https://doi.org/10.1093/gerona/glv126

    Article  PubMed  Google Scholar 

  20. Liu B, Hu X, Zhang Q, Fan Y, Li J, Zou R, Zhang M, Wang X, Wang J (2016) Usual walking speed and all-cause mortality risk in older people: a systematic review and meta-analysis. Gait Posture 44:172–177. https://doi.org/10.1016/j.gaitpost.2015.12.008

    Article  PubMed  Google Scholar 

  21. Yanagimoto Y, Oshida Y, Sato Y (2000) Effects of walking on bone quality as determined by ultrasound in the elderly. Scand J Med Sci Sports 10:103–108. https://doi.org/10.1034/j.1600-0838.2000.010002103.x

    Article  CAS  PubMed  Google Scholar 

  22. Tomita Y, Arima K, Mizukami S, Tsujimoto R, Kawashiri SY et al (2020) Association between self-reported walking speed and calcaneal stiffness index in postmenopausal Japanese women. BMC Geriatr 20:466. https://doi.org/10.1186/s12877-020-01858-4

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kwon J, Suzuki T, Yoshida H, Kim H, Yoshida Y, Iwasa H, Sugiura M, Furuna T (2007) Association between change in bone mineral density and decline in usual walking speed in elderly community-dwelling Japanese women during 2 years of follow-up. J Am Geriatr Soc 55:240–244. https://doi.org/10.1111/j.1532-5415.2007.01066.x

    Article  PubMed  Google Scholar 

  24. Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35:1381–1395. https://doi.org/10.1249/01.MSS.0000078924.61453.FB

    Article  PubMed  Google Scholar 

  25. Tomioka K, Iwamoto J, Saeki K, Okamoto N (2011) Reliability and validity of the international physical activity questionnaire (IPAQ) in elderly adults: the Fujiwara-kyo Study. J Epidemiol 21:459–465. https://doi.org/10.2188/jea.je20110003

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hans D, Métrailler A, Gonzalez Rodriguez E, Lamy O, Shevroja E (2022) Quantitative ultrasound (QUS) in the management of osteoporosis and assessment of fracture risk: an update. Adv Exp Med Biol 1364:7–34. https://doi.org/10.1007/978-3-030-91979-5_2

    Article  Google Scholar 

  27. Lu YH, Geng JH, Wu DW, Chen SC, Hung CH, Kuo CH (2021) Betel nut chewing decreased calcaneus ultrasound t-score in a large taiwanese population follow-up study. Nutrients. https://doi.org/10.3390/nu13103655

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hans D, Baim S (2017) Quantitative ultrasound (QUS) in the management of osteoporosis and assessment of fracture risk. J Clin Densitom 20:322–333. https://doi.org/10.1016/j.jocd.2017.06.018

    Article  PubMed  Google Scholar 

  29. Njeh CF, Boivin CM, Langton CM (1997) The role of ultrasound in the assessment of osteoporosis: a review. Osteoporos Int 7:7–22. https://doi.org/10.1007/BF01623454

    Article  CAS  PubMed  Google Scholar 

  30. Moayyeri A, Adams JE, Adler RA, Krieg MA, Hans D, Compston J, Lewiecki EM (2012) Quantitative ultrasound of the heel and fracture risk assessment: an updated meta-analysis. Osteoporos Int 23:143–153. https://doi.org/10.1007/s00198-011-1817-5

    Article  CAS  PubMed  Google Scholar 

  31. Chan GK, Duque G (2002) Age-related bone loss: old bone, new facts. Gerontology 48:62–71. https://doi.org/10.1159/000048929

    Article  Google Scholar 

  32. Sun W, Watanabe M, Tanimoto Y, Kono R, Saito M, Hirota C, Kono K (2009) Assessment of the best gait parameter in relation to bone status in community-dwelling young-old and old-old women in Japan. Arch Gerontol Geriatr 49:158–161. https://doi.org/10.1016/j.archger.2008.06.008

    Article  PubMed  Google Scholar 

  33. Graham JE, Ostir GV, Fisher SR, Ottenbacher KJ (2008) Assessing walking speed in clinical research: a systematic review. J Eval Clin Pract 14:552–562. https://doi.org/10.1111/j.1365-2753.2007.00917.x

    Article  PubMed  PubMed Central  Google Scholar 

  34. Beaton K, McEvoy C, Grimmer K (2015) Identifying indicators of early functional decline in community-dwelling older people: a review. Geriatr Gerontol Int 15:133–140. https://doi.org/10.1111/ggi.12379

    Article  PubMed  Google Scholar 

  35. Shinkai S, Watanabe S, Kumagai S, Fujiwara Y, Amano H, Yoshida H, Ishizaki T, Yukawa H, Suzuki T, Shibata H (2000) Walking speed as a good predictor for the onset of functional dependence in a Japanese rural community population. Age Ageing 29:441–446. https://doi.org/10.1093/ageing/29.5.441

    Article  CAS  PubMed  Google Scholar 

  36. Woo J (2015) Walking speed: a summary indicator of frailty? J Am Med Dir Assoc 16:635–637. https://doi.org/10.1016/j.jamda.2015.04.003

    Article  PubMed  Google Scholar 

  37. Ringsberg K, Gerdhem P, Johansson J, Obrant KJ (1999) Is there a relationship between balance, gait performance and muscular strength in 75-year-old women? Age Ageing 28:289–293. https://doi.org/10.1093/ageing/28.3.289

    Article  CAS  PubMed  Google Scholar 

  38. Wu T, Zhao Y (2021) Associations between functional fitness and walking speed in older adults. Geriatr Nurs 42:540–543. https://doi.org/10.1016/j.gerinurse.2020.10.003

    Article  PubMed  Google Scholar 

  39. Sakazaki T, Koike T, Yanagimoto Y, Oshida Y (2012) Association between gait speed and bone strength in community-dwelling postmenopausal Japanese women. Environ Health Prev Med 17:394–400. https://doi.org/10.1007/s12199-012-0267-9

    Article  PubMed  PubMed Central  Google Scholar 

  40. Trevisan C, Alessi A, Girotti G, Zanforlini BM, Bertocco A, Mazzochin M, Zoccarato F, Piovesan F, Dianin M, Giannini S, Manzato E, Sergi G (2020) The impact of smoking on bone metabolism, bone mineral density and vertebral fractures in postmenopausal women. J Clin Densitom 23:381–389. https://doi.org/10.1016/j.jocd.2019.07.007

    Article  PubMed  Google Scholar 

  41. Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann N Y Acad Sci 1092:385–396. https://doi.org/10.1196/annals.1365.035

    Article  CAS  PubMed  Google Scholar 

  42. Rauch F, Schoenau E (2001) The developing bone: slave or master of its cells and molecules? Pediatr Res 50:309–314. https://doi.org/10.1203/00006450-200109000-00003

    Article  CAS  PubMed  Google Scholar 

  43. Chiu MC, Wang MJ (2007) The effect of gait speed and gender on perceived exertion, muscle activity, joint motion of lower extremity, ground reaction force and heart rate during normal walking. Gait Posture 25:385–392. https://doi.org/10.1016/j.gaitpost.2006.05.008

    Article  PubMed  Google Scholar 

  44. Marsh AP, Miller ME, Saikin AM, Rejeski WJ, Hu N, Lauretani F, Bandinelli S, Guralnik JM, Ferrucci L (2006) Lower extremity strength and power are associated with 400-meter walk time in older adults: The InCHIANTI study. J Gerontol a Biol Sci Med Sci 61:1186–1193. https://doi.org/10.1093/gerona/61.11.1186

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the participants for their voluntary participation in this study. We gratefully appreciate the resources provided by Shanghai Surveillance Center for physical fitness.

Funding

This work was supported by the National Key Research and Development Program of China (2020YFC2003301).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: TZ, DW, P-jC; Methodology: JjW, Y-yL, Y-hL, JL; Formal analysis: TZ, M-hQ; Investigation: TZ, J-jW, Y-yL, Y-hL, JL, J-tH; Writing—Original Draft: TZ; Writing—Review and Editing: TZ, J-jW, J-tH, M-hQ; Funding acquisition: M-hQ, P-jC; Resources: DW, P-jC; Supervision: MQ, DW, P-jC. TZ and J-jW: contributed equally to this paper.

Corresponding authors

Correspondence to Minghui Quan, Dao Wang or Peijie Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Wang, J., Li, Y. et al. Association between walking speed and calcaneus stiffness index in older adults. J Bone Miner Metab 41, 693–701 (2023). https://doi.org/10.1007/s00774-023-01447-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-023-01447-6

Keywords

Navigation