Skip to main content

Advertisement

Log in

Mir-4699 promotes the osteogenic differentiation of mesenchymal stem cells

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Mesenchymal stem cells (MSCs) are drawing considerable attention in the field of regenerative medicine due to their differentiation capabilities. The miRNAs are among the most important epigenetic regulators of MSC differentiation. Our previous study identified miR-4699 as a direct suppressor of the DKK1 and TNSF11 gene expression. However, the precise osteogenic-related phenotype or mechanism caused by miR-4699 change has yet to be dealt with in depth.

Material and Methods

In the present study, miR-4699 mimics were transfected into human Adipose tissue-derived mesenchymal stem cells (hAd-MSCs) and osteoblast marker gene expression (RUNX2, ALP, and OCN), was analyzed to investigate whether miR-4699 promotes osteoblast differentiation of hAd-MSCs through targeting the DKK-1 and TNFSF11. We further examined and compared the effects of recombinant human BMP2 with miR-4699 on cell differentiation. In addition to quantitative PCR, analysis of alkaline phosphatase activity, calcium content assay, and Alizarin red staining were used to explore osteogenic differentiation. To evaluate the effect of miR-4699 on its target gene (on protein level) we utilized the western blotting technique.

Results

The overexpression of miR-4699 in hAd-MSCs resulted in the stimulation of alkaline phosphatase activity, osteoblast mineralization, and the expression of RUNX2, ALP, and OCN osteoblast marker genes.

Conclusion

Our findings indicated that miR-4699 supported and synergized the BMP2-induced osteoblast differentiation of mesenchymal stem cells. We suggest, thereof, the utilization of hsa-miR-4699 for further in vivo experimental investigation to reveal the potential therapeutic impact of regenerative medicine for different types of bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Fung B, Hoit G, Schemitsch E, Godbout C, Nauth A (2020) The induced membrane technique for the management of long bone defects: a systematic review of patient outcomes and predictive variables. Bone Joint J 102:1723–1734

    Article  PubMed  Google Scholar 

  2. MaroltPresen D, Traweger A, Gimona M, Redl H (2019) Mesenchymal stromal cell-based bone regeneration therapies: from cell transplantation and tissue engineering to therapeutic secretomes and extracellular vesicles. Front Bioeng Biotechnol 7:352

    Article  Google Scholar 

  3. Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J (2019) Mesenchymal stem cells for regenerative medicine. Cells 8:886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM (2015) TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone research 3:1–20

    Article  CAS  Google Scholar 

  5. Baron R, Rawadi G (2007) Wnt signaling and the regulation of bone mass. Curr Osteoporos Rep 5:73–80

    Article  PubMed  Google Scholar 

  6. Bajada S, Marshall MJ, Wright KT, Richardson JB, Johnson WE (2009) Decreased osteogenesis, increased cell senescence and elevated Dickkopf-1 secretion in human fracture non union stromal cells. Bone 45:726–735

    Article  CAS  PubMed  Google Scholar 

  7. Kobayashi Y, Udagawa N, Takahashi N (2009) Action of RANKL and OPG for osteoclastogenesis. Crit Rev Eukaryot Gene Expr. 19:61–72

    Article  CAS  PubMed  Google Scholar 

  8. Venegas KR, Aguilera M, Garre MC, Hernández MAC (2013) Pharmacogenomics of Osteoporosis-Related Bone Fractures. In: Barh D, Dhawan D, Ganguly N (eds) Omics for Personalized Medicine. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1184-6_29

  9. Awasthi H, Mani D, Singh D, Gupta A (2018) The underlying pathophysiology and therapeutic approaches for osteoporosis. Med Res Rev 38:2024–2057

    Article  PubMed  Google Scholar 

  10. Li Z, Rana TM (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discovery 13:622–638

    Article  CAS  PubMed  Google Scholar 

  11. Hosseini V, Mohammadi-Yeganeh S, Ghanbarian H, Hashemi SM, Khojasteh A (2018) The power of precise bioinformatics prediction of miRNA: mRNA interactions: miR-4699 as a potential inducer of Wnt signaling pathway. J Cell Biochem 119:5960–5969

    Article  CAS  PubMed  Google Scholar 

  12. Grünhagen J, Bhushan R, Degenkolbe E, Jäger M, Knaus P, Mundlos S, Robinson PN, Ott CE (2015) MiR-497∼ 195 cluster microRNAs regulate osteoblast differentiation by targeting BMP signaling. J Bone Miner Res 30:796–808

    Article  PubMed  Google Scholar 

  13. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36-e

    Article  PubMed  PubMed Central  Google Scholar 

  14. Untergasser A, Ruijter JM, Benes V, van den Hoff MJ (2021) Web-based LinRegPCR: application for the visualization and analysis of (RT)-qPCR amplification and melting data. BMC Bioinformatics 22:398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  16. Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV et al (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 280:33132–33140

    Article  CAS  PubMed  Google Scholar 

  17. Mori K, Kitazawa R, Kondo T, Maeda S, Yamaguchi A, Kitazawa S (2006) Modulation of mouse RANKL gene expression by Runx2 and PKA pathway. J Cell Biochem 98:1629–1644

    Article  CAS  PubMed  Google Scholar 

  18. Bain G, Müller T, Wang X, Papkoff J (2003) Activated β-catenin induces osteoblast differentiation of C3H10T1/2 cells and participates in BMP2 mediated signal transduction. Biochem Biophys Res Commun 301:84–91

    Article  CAS  PubMed  Google Scholar 

  19. Cao X (2018) RANKL-RANK signaling regulates osteoblast differentiation and bone formation. Bone research 6:35

    Article  PubMed  PubMed Central  Google Scholar 

  20. Amankwah EK, Devidas M, Teachey DT, Rabin KR, Brown PA (2020) Six candidate miRNAs associated with early relapse in pediatric B-cell acute lymphoblastic leukemia. Anticancer Res 40:3147–3153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wei F, Zhang J, Zhang Y, Zheng R, Leng X, Fang C. (2021) MicroRNA-4699–3p inhibits the proliferation and migration of ovarian cancer cells by regulating the expression of mitochondrial ribosomal protein S23. J Chin Phys. 1044–8.

  22. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy JD Jr (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349:2483–2494

    Article  CAS  PubMed  Google Scholar 

  23. Frey JL, Li Z, Ellis JM, Zhang Q, Farber CR, Aja S, Wolfgang MJ, Clemens TL, Riddle RC (2015) Wnt-Lrp5 signaling regulates fatty acid metabolism in the osteoblast. Mol Cell Biol 35:1979–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Butler JS, Murray DW, Hurson CJ, O’Brien J, Doran PP, O’Byrne JM (2011) The role of Dkk1 in bone mass regulation: correlating serum Dkk1 expression with bone mineral density. J Orthop Res 29:414–418

    Article  PubMed  Google Scholar 

  25. Kapinas K, Kessler C, Ricks T, Gronowicz G, Delany AM (2010) miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem 285:25221–25231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang J, Tu Q, Bonewald LF, He X, Stein G, Lian J, Chen J (2011) Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res 26:1953–1963

    Article  CAS  PubMed  Google Scholar 

  27. Iwamoto N, Fukui S, Takatani A, Shimizu T, Umeda M, Nishino A, Igawa T, Koga T, Kawashiri SY, Ichinose K, Tmai M, Nakamura H, Origuchi T, Chiba K, Osaki M, Jüngel A, Gay S, Kawakami A (2018) Osteogenic differentiation of fibroblast-like synovial cells in rheumatoid arthritis is induced by microRNA-218 through a ROBO/Slit pathway. Arthritis Res Ther 20:1–10

    Article  Google Scholar 

  28. Zheng L, Tu Q, Meng S, Zhang L, Yu L, Song J, Hu Y, Sui L, Zhang J, Dard M, Cheng J, Murray D, Tang Y, Lian JB, Stein GS, Chen J (2017) Runx2/DICER/miRNA pathway in regulating osteogenesis. J Cell Physiol 232:182–191

    Article  CAS  PubMed  Google Scholar 

  29. Sui L, Wang M, Han Q, Yu L, Zhang L, Valverde P, Xu Q, Tu Q, Chen J (2018) A novel Lipidoid-MicroRNA formulation promotes calvarial bone regeneration. Biomaterials 177:88–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu X, Xu H, Kou J, Wang Q, Zheng X, Yu T (2016) MiR-9 promotes osteoblast differentiation of mesenchymal stem cells by inhibiting DKK1 gene expression. Mol Biol Rep 43:939–946

    Article  CAS  PubMed  Google Scholar 

  31. Genda Y, Arai M, Ishikawa M, Tanaka S, Okabe T, Sakamoto A (2013) microRNA changes in the dorsal horn of the spinal cord of rats with chronic constriction injury: A TaqMan® low density array study. Int J Mol Med 31:129–137

    Article  CAS  PubMed  Google Scholar 

  32. Danks L, Takayanagi H (2013) Immunology and bone. J Biochem 154:29–39

    Article  CAS  PubMed  Google Scholar 

  33. Wada T, Nakashima T, Hiroshi N, Penninger JM (2006) RANKL–RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 12:17–25

    Article  CAS  PubMed  Google Scholar 

  34. Tang P, Xiong Q, Ge W, Zhang L (2014) The role of microRNAs in osteoclasts and osteoporosis. RNA Biol 11:1355–1363

    Article  PubMed  Google Scholar 

  35. Pitari MR, Rossi M, Amodio N, Botta C, Morelli E, Federico C, Gullà A, Caracciolo D, Di Martino MT, Arbitrio M, Giordano A, Tagliaferri P, Tassone P (2015) Inhibition of miR-21 restores RANKL/OPG ratio in multiple myeloma-derived bone marrow stromal cells and impairs the resorbing activity of mature osteoclasts. Oncotarget 6:27343

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hu C-H, Sui B-D, Du F-Y, Shuai Y, Zheng C-X, Zhao P, Yu XR, Jin Y (2017) miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice. Sci Rep 7:43191

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li S, Zhang H, Li S, Yang Y, Huo B, Zhang D (2015) Connexin 43 and ERK regulate tension-induced signal transduction in human periodontal ligament fibroblasts. J Orthop Res 33:1008–1014

    Article  CAS  PubMed  Google Scholar 

  38. Zhang X, Geng G, Su B, Liang C, Wang F, Bao J (2016) MicroRNA-338-3p inhibits glucocorticoid-induced osteoclast formation through RANKL targeting. Genet Mol Res 15:1–9

    Google Scholar 

Download references

Acknowledgements

The author thanks the Cellular and Molecular Biology Research Center and Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, for providing technical support.

Funding

This project was funded by Shahid Beheshti University of Medical Sciences, Tehran, Iran (Contact grant No: 32003). The funders had no role in the study design, data collection, analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

VH: conceptualization, investigation, formal analysis, methodology, resources, writing—original draft, writing—review, and editing. Ak: data curation, investigation, formal analysis, resources, writing—original draft, writing—review, and editing. HMC: methodology and writing—review and editing. SM-Y and MP: conceptualization, formal analysis, funding acquisition, methodology, writing—original draft and writing—review and editing.

Corresponding authors

Correspondence to Mahdi Paryan or Samira Mohammadi-Yeganeh.

Ethics declarations

Conflict of interest

The authors declare no competing conflict of interest concerning the work described.

Ethical approval

This project was approved and supervised by the ethical committee of Shahid Beheshti University of Medical Sciences, (ethics number Iran (IR.SBMU.REC.1401.002)).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1847 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, V., Paryan, M., Koochaki, A. et al. Mir-4699 promotes the osteogenic differentiation of mesenchymal stem cells. J Bone Miner Metab 41, 481–491 (2023). https://doi.org/10.1007/s00774-023-01433-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-023-01433-y

Keywords

Navigation