Skip to main content

Advertisement

Log in

Repurposing sarecycline for osteoinductive therapies: an in vitro and ex vivo assessment

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Tetracyclines (TCs) embrace a class of broad-spectrum antibiotics with unrelated effects at sub-antimicrobial levels, including an effective anti-inflammatory activity and stimulation of osteogenesis, allowing their repurposing for different clinical applications. Recently, sarecycline (SA)—a new-generation molecule with a narrower antimicrobial spectrum—was clinically approved due to its anti-inflammatory profile and reduced adverse effects verified with prolonged use. Notwithstanding, little is known about its osteogenic potential, previously verified for early generation TCs.

Materials and Methods

Accordingly, the present study is focused on the assessment of the response of human bone marrow-derived mesenchymal stromal cells (hBMSCs) to a concentration range of SA, addressing the metabolic activity, morphology and osteoblastic differentiation capability, further detailing the modulation of Wnt, Hedgehog, and Notch signaling pathways. In addition, an ex vivo organotypic bone development system was established in the presence of SA and characterized by microtomographic and histochemical analysis.

Results

hBMSCs cultured with SA presented a significantly increased metabolic activity compared to control, with an indistinguishable cell morphology. Moreover, RUNX2 expression was upregulated 2.5-fold, and ALP expression was increased around sevenfold in the presence of SA. Further, GLI2 expression was significantly upregulated, while HEY1 and HNF1A were downregulated, substantiating Hedgehog and Notch signaling pathways’ modulation. The ex vivo model developed in the presence of SA presented a significantly enhanced collagen deposition, extended migration areas of osteogenesis, and an increased bone mineral content, substantiating an increased osteogenic development.

Conclusion

Summarizing, SA is a promising candidate for drug repurposing within therapies envisaging the enhancement of bone healing/regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Weinberg MA, Bral M (1998) Tetracycline and its analogues: a therapeutic paradigm in periodontal diseases. Crit Rev Oral Biol Med 9:322–332. https://doi.org/10.1177/10454411980090030501

    Article  CAS  PubMed  Google Scholar 

  2. Garrido-Mesa N, Zarzuelo A, Gálvez J (2013) Minocycline: far beyond an antibiotic. Br J Pharmacol 169:337–352. https://doi.org/10.1111/bph.12139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S et al (2019) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 18:41–58. https://doi.org/10.1038/nrd.2018.168

    Article  CAS  PubMed  Google Scholar 

  4. Gomes PS, Fernandes MH (2007) Effect of therapeutic levels of doxycycline and minocycline in the proliferation and differentiation of human bone marrow osteoblastic cells. Arch Oral Biol 52:251–259. https://doi.org/10.1016/j.archoralbio.2006.10.005

    Article  CAS  PubMed  Google Scholar 

  5. Muthukuru M, Sun J (2013) Doxycycline counteracts bone morphogenic protein 2-induced osteogenic mediators. J Periodontol 84:656–665. https://doi.org/10.1902/jop.2012.120338

    Article  CAS  PubMed  Google Scholar 

  6. Park J-B (2011) Effects of doxycycline, minocycline, and tetracycline on cell proliferation, differentiation, and protein expression in osteoprecursor cells. J Craniofac Surg 22:1839–1842. https://doi.org/10.1097/SCS.0b013e31822e8216

    Article  PubMed  Google Scholar 

  7. Suzuki A, Yagisawa J, Kumakura S, Tsutsui T (2006) Effects of minocycline and doxycycline on cell survival and gene expression in human gingival and periodontal ligament cells. J Periodontal Res 41:124–131. https://doi.org/10.1111/j.1600-0765.2005.00843.x

    Article  CAS  PubMed  Google Scholar 

  8. Lecio G, Ribeiro FV, Pimentel SP, Reis AA, da Silva RVC et al (2020) Novel 20% doxycycline-loaded PLGA nanospheres as adjunctive therapy in chronic periodontitis in type-2 diabetics: randomized clinical, immune and microbiological trial. Clin Oral Investig 24:1269–1279. https://doi.org/10.1007/s00784-019-03005-9

    Article  PubMed  Google Scholar 

  9. Burgos RM, Rodvold KA (2019) Omadacycline: a novel aminomethylcycline. Infect Drug Resist 12:1895–1915. https://doi.org/10.2147/IDR.S171352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Haidari W, Bruinsma R, Cardenas-de-la-Garza JA, Feldman SR (2019) Sarecycline review. Ann Pharmacother 2019:106002801987311. https://doi.org/10.1177/1060028019873111

    Article  Google Scholar 

  11. Zhanel G, Critchley I, Lin LY, Alvandi N (2019) Microbiological profile of sarecycline, a novel targeted spectrum tetracycline for the treatment of acne vulgaris. Antimicrob Agents Chemother 63:1–15. https://doi.org/10.1128/AAC.01297-18

    Article  Google Scholar 

  12. Bunick CG, Keri J, Tanaka SK, Furey N, Damiani G et al (2021) Antibacterial mechanisms and efficacy of sarecycline in animal models of infection and inflammation. Antibiotics 10:1–12. https://doi.org/10.3390/antibiotics10040439

    Article  CAS  Google Scholar 

  13. Martin V, Garcia M, Montemor MF, Fernandes JCS, Gomes PS, Fernandes MH (2022) Simulating in vitro the bone healing potential of a degradable and tailored multifunctional mg-based alloy platform. Bioengineering 9:255. https://doi.org/10.3390/bioengineering9060255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garbieri TF, Martin V, dos Santos CF, Gomes PDS, Fernandes MH (2021) The embryonic chick femur organotypic model as a tool to analyze the angiotensin ii axis on bone tissue. Pharmaceuticals 14:469. https://doi.org/10.3390/ph14050469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Araújo R, Martin V, Ferreira R, Fernandes MH, Gomes PS (2022) A new ex vivo model of the bone tissue response to the hyperglycemic environment–the embryonic chicken femur organotypic culture in high glucose conditions. Bone 158:116355. https://doi.org/10.1016/j.bone.2022.116355

    Article  CAS  PubMed  Google Scholar 

  16. Kanczler JM, Smith EL, Roberts CA, Oreffo ROC (2012) A Novel approach for studying the temporal modulation of embryonic skeletal development using organotypic bone cultures and microcomputed tomography. Tissue Eng Part C Methods 18:747–760. https://doi.org/10.1089/ten.tec.2012.0033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ding DC, Shyu WC, Lin SZ (2011) Mesenchymal stem cells. Cell Transplant 20:5–14. https://doi.org/10.3727/096368910X

    Article  PubMed  Google Scholar 

  18. Shen LC, Chen YK, Lin LM, Shaw SY (2010) Anti-invasion and anti-tumor growth effect of doxycycline treatment for human oral squamous-cell carcinoma—in vitro and in vivo studies. Oral Oncol 46:178–184. https://doi.org/10.1016/j.oraloncology.2009.11.013

    Article  CAS  PubMed  Google Scholar 

  19. Onoda T, Ono T, Dhar DK, Yamanoi A, Fujii T, Nagasue N (2004) Doxycycline inhibits cell proliferation and invasive potential: combination therapy with cyclooxygenase-2 inhibitor in human colorectal cancer cells. J Lab Clin Med 143:207–216. https://doi.org/10.1016/j.lab.2003.12.012

    Article  CAS  PubMed  Google Scholar 

  20. Garrido-Mesa N, Zarzuelo A, Gálvez J (2013) What is behind the non-antibiotic properties of minocycline? Pharmacol Res 67:18–30. https://doi.org/10.1016/j.phrs.2012.10.006

    Article  CAS  PubMed  Google Scholar 

  21. Sagar J, Sales K, Seifalian A, Winslet M (2010) Doxycycline in mitochondrial mediated pathway of apoptosis: a systematic review. Anticancer Agents Med Chem 10:556–563. https://doi.org/10.2174/187152010793498645

    Article  CAS  PubMed  Google Scholar 

  22. Chen M, Ona VO, Li M, Ferrante RJ, Fink KB et al (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 6:797–801. https://doi.org/10.1038/77528

    Article  CAS  PubMed  Google Scholar 

  23. Walters B, Uynuk-Ool T, Rothdiener M, Palm J, Hart ML et al (2017) Engineering the geometrical shape of mesenchymal stromal cells through defined cyclic stretch regimens. Sci Rep 7:1–14. https://doi.org/10.1038/s41598-017-06794-9

    Article  CAS  Google Scholar 

  24. Jhala D, Rather H, Vasita R (2016) Polycaprolactone-chitosan nanofibers influence cell morphology to induce early osteogenic differentiation. Biomater Sci 4:1584–1595. https://doi.org/10.1039/c6bm00492j

    Article  CAS  PubMed  Google Scholar 

  25. Almazin SM, Dziak R, Andreana S, Ciancio SG (2009) The effect of doxycycline hyclate, chlorhexidine gluconate, and minocycline hydrochloride on osteoblastic proliferation and differentiation in vitro. J Periodontol 80:999–1005. https://doi.org/10.1902/jop.2009.080574

    Article  CAS  PubMed  Google Scholar 

  26. Martin V, Ribeiro IA, Alves MM, Gonçalves L, Claudio RA et al (2019) Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Mater Sci Eng C 101:15–26. https://doi.org/10.1016/j.msec.2019.03.056

    Article  CAS  Google Scholar 

  27. Kim Y, Kim J, Lee H, Shin W-R, Lee S et al (2019) Tetracycline analogs inhibit osteoclast differentiation by suppressing MMP-9-mediated histone H3 cleavage. Int J Mol Sci 20:4038. https://doi.org/10.3390/ijms20164038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lattanzi W, Bernardini C (2012) Genes and molecular pathways of the osteogenic process. Osteogenesis. https://doi.org/10.5772/34022

    Article  Google Scholar 

  29. Song L (2017) Calcium and bone metabolism indices, vol 82, 1st ed. Elsevier Inc., Hoboken. https://doi.org/10.1016/bs.acc.2017.06.005

  30. Rosset EM, Bradshaw AD (2016) SPARC/osteonectin in mineralized tissue. Matrix Biol 52–54:78–87. https://doi.org/10.1016/j.matbio.2016.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hosseini S, Naderi-Manesh H, Vali H, Baghaban Eslaminejad M, Azam Sayahpour F et al (2019) Contribution of osteocalcin-mimetic peptide enhances osteogenic activity and extracellular matrix mineralization of human osteoblast-like cells. Colloids Surfaces B Biointerfaces 173:662–671. https://doi.org/10.1016/j.colsurfb.2018.10.035

    Article  CAS  PubMed  Google Scholar 

  32. Santibanez JF, Obradović H, Kukolj T, Krstić J (2018) Transforming growth factor-β, matrix metalloproteinases, and urokinase-type plasminogen activator interaction in the cancer epithelial to mesenchymal transition. Dev Dyn 247:382–395. https://doi.org/10.1002/dvdy.24554

    Article  CAS  PubMed  Google Scholar 

  33. Kuwahara ST, Liu S, Chareunsouk A, Serowoky M, Mariani FV (2022) On the horizon: Hedgehog signaling to heal broken bones. Bone Res 10:13. https://doi.org/10.1038/s41413-021-00184-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miao D, Liu H, Plut P, Niu M, Huo R et al (2004) Impaired endochondral bone development and osteopenia in Gli2-deficient mice. Exp Cell Res 294:210–222. https://doi.org/10.1016/j.yexcr.2003.10.021

    Article  CAS  PubMed  Google Scholar 

  35. Shimoyama A, Wada M, Ikeda F, Hata K, Matsubara T et al (2007) Ihh/Gli2 signaling promotes osteoblast differentiation by regulating Runx2 expression and function. Mol Biol Cell 18:2411–2418. https://doi.org/10.1091/mbc.e06-08-0743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bagheri L, Pellati A, Rizzo P, Aquila G, Massari L et al (2018) Notch pathway is active during osteogenic differentiation of human bone marrow mesenchymal stem cells induced by pulsed electromagnetic fields. J Tissue Eng Regen Med 12:304–315. https://doi.org/10.1002/term.2455

    Article  CAS  PubMed  Google Scholar 

  37. Suh JH, Lee HW, Lee JW, Kim JB (2008) Hes1 stimulates transcriptional activity of Runx2 by increasing protein stabilization during osteoblast differentiation. Biochem Biophys Res Commun 367:97–102. https://doi.org/10.1016/j.bbrc.2007.12.100

    Article  CAS  PubMed  Google Scholar 

  38. Zamurovic N, Cappellen D, Rohner D, Susa M (2004) Coordinated activation of Notch, Wnt, and transforming growth factor-β signaling pathways in bone morphogenic protein 2-induced osteogenesis: Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity. J Biol Chem 279:37704–37715. https://doi.org/10.1074/jbc.M403813200

    Article  CAS  PubMed  Google Scholar 

  39. Qin Y, Zhang Q, Lee S, Zhong WL, Liu YR et al (2015) Doxycycline reverses epithelial-to-mesenchymal transition and suppresses the proliferation and metastasis of lung cancer cells. Oncotarget 6:4066779. https://doi.org/10.18632/oncotarget.5842

    Article  Google Scholar 

  40. Bonner C, Farrelly AM, Concannon CG, Dussmann H, Baquie M et al (2011) Bone morphogenetic protein 3 controls insulin gene expression and is down-regulated in INS-1 cells inducibly expressing a hepatocyte nuclear factor 1A-maturity-onset diabetes of the young mutation. J Biol Chem 286:25719–25728. https://doi.org/10.1074/jbc.M110.215525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Di Pietro L, Barba M, Prampolini C, Ceccariglia S, Frassanito P et al (2020) Gli1 and axin2 are distinctive markers of human calvarial mesenchymal stromal cells in nonsyndromic craniosynostosis. Int J Mol Sci 21:1–19. https://doi.org/10.3390/ijms21124356

    Article  CAS  Google Scholar 

  42. Smith E, Kanczler J, Oreffo R (2013) A new take on an old story: chick limb organ culture for skeletal niche development and regenerative medicine evaluation. Eur Cells Mater 26:91–106. https://doi.org/10.22203/eCM.v026a07

    Article  CAS  Google Scholar 

  43. Cole AA, Chubinskaya S, Luchene LJ, Chlebek K, Orth MW et al (1994) Doxycycline disrupts chondrocyte differentiation and inhibits cartilage matrix degradation. Arthritis Rheum 37:1727–1734. https://doi.org/10.1002/art.1780371204

    Article  CAS  PubMed  Google Scholar 

  44. Tham AY, Gandhimathi C, Praveena J, Venugopal JR, Ramakrishna S, Kumar SD (2016) Minocycline loaded hybrid composites nanoparticles for mesenchymal stem cells differentiation into osteogenesis. Int J Mol Sci 17:1–16. https://doi.org/10.3390/ijms17081222

    Article  CAS  Google Scholar 

  45. Gomes PS, Santos JD, Fernandes MH (2008) Cell-induced response by tetracyclines on human bone marrow colonized hydroxyapatite and Bonelike®. Acta Biomater 4:630–637. https://doi.org/10.1016/j.actbio.2007.12.006

    Article  CAS  PubMed  Google Scholar 

  46. Silva T, Silva JC, Colaco B, Gama A, Duarte-Araújo M et al (2018) In vivo tissue response and antibacterial efficacy of minocycline delivery system based on polymethylmethacrylate bone cement. J Biomater Appl 33:380–391. https://doi.org/10.1177/0885328218795290

    Article  CAS  PubMed  Google Scholar 

  47. Lee BS, Lee CC, Wang YP, Chen HJ, Lai CH et al (2016) Controlled-release of tetracycline and lovastatin by poly(D, L-lactide-co-glycolide acid)-chitosan nanoparticles enhances periodontal regeneration in dogs. Int J Nanomed 11:285–297. https://doi.org/10.2147/IJN.S94270

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the i3S Scientific Platform Bioimaging, member of the PPBI (PPBI-POCI-01-0145-FEDER-022122), as well as HEMS—Histology and Electron Microscopy Department.

Funding

This work received financial support from national funds (FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior) through project 2022.06464.PTDC. Victor Martin thanks FCT for his PhD Grant Ref. 2020.04935.BD.

Author information

Authors and Affiliations

Authors

Contributions

VM: conceptualization, investigation, methodology, and writing—review & editing. LG: investigation and methodology. MHF: validation, and writing—review & editing. PG: conceptualization, validation, supervision, and writing—review & editing.

Corresponding author

Correspondence to Pedro S. Gomes.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest nor financial interests with Adooq Bioscience.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, V., Grenho, L., Fernandes, M.H. et al. Repurposing sarecycline for osteoinductive therapies: an in vitro and ex vivo assessment. J Bone Miner Metab 41, 431–442 (2023). https://doi.org/10.1007/s00774-023-01428-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-023-01428-9

Keywords

Navigation