Skip to main content


Log in

Association between dietary intake of α-tocopherol and cadmium related osteoporosis in population ≥ 50 years

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript



To analyze the association between α-tocopherol intake and cadmium (Cd) exposure and osteoporosis in population ≥ 50 years.

Materials and methods

Sociodemographic data, physical examination, and laboratory indicators including serum Cd level and dietary α-tocopherol intake of 8459 participants were extracted from the National Health and Nutrition Examination Survey (NHANES) database in this cross-sectional study. The associations between α-tocopherol intake, serum Cd levels and osteoporosis were evaluated using univariate and multivariate logistic regression analyses, with the estimated value (β), odds ratios (ORs) and 95% confidence intervals (CIs). We further explored the impact of α-tocopherol intake on Cd exposure and the bone mineral density (BMD) in total femur and femur neck.


A total of 543 old adults suffered from osteoporosis. The serum Cd level (0.52 μg/L vs. 0.37 μg/L) and α-tocopherol intake (5.28 mg vs. 6.50 mg) were statistical different in osteoporosis group and non-osteoporosis group, respectively. High level of Cd exposure was related to the increased risk of osteoporosis [OR = 1.60, 95% CI (1.15–2.21)]. In the total femur, α-tocopherol intake may improve the loss of BMD that associated with Cd exposure [β = − 0.047, P = 0.037]. Moreover, high α-tocopherol intake combined with low Cd exposure [OR = 0.54, 95% CI (0.36–0.81)] was linked to the decreased risk of osteoporosis comparing with low α-tocopherol intake combined with high Cd exposure.


High α-tocopherol intake may improve the Cd-related osteoporosis and loss of BMD that could provide some dietary reference for prevention of osteoporosis in population ≥ 50 years old.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others


  1. Duan W, Meng X, Sun Y, Jia C (2018) Association between polycyclic aromatic hydrocarbons and osteoporosis: data from NHANES, 2005–2014. Arch Osteoporos 13:112.

    Article  PubMed  Google Scholar 

  2. Hsieh RL, Huang YL, Chen WJ, Chen HH, Shiue HS, Lin YC, Hsueh YM (2022) Associations between plasma folate and vitamin B12, blood lead, and bone mineral density among adults and elderly who received a health examination. Nutrients 14:4.

    Article  CAS  Google Scholar 

  3. Wang N, Wang Y, Zhang H, Guo Y, Chen C, Zhang W, Wan H, Han J, Lu Y (2020) Association of bone mineral density with nine urinary personal care and consumer product chemicals and metabolites: a national-representative, population-based study. Environ Int 142:105865.

    Article  CAS  PubMed  Google Scholar 

  4. Kim Y, Kim JH, Cho DS (2015) Gender difference in osteoporosis prevalence, awareness and treatment: based on the Korea national health and nutrition examination survey 2008–2011. J Korean Acad Nurs 45:293–305.

    Article  PubMed  Google Scholar 

  5. Elonheimo H, Lange R, Tolonen H, Kolossa-Gehring M (2021) Environmental substances associated with osteoporosis—a scoping review. Int J Environ Res Public Health 18:2.

    Article  CAS  Google Scholar 

  6. Hsueh YM, Huang YL, Chen HH, Shiue HS, Lin YC, Hsieh RL (2021) Alcohol consumption moderated the association between levels of high blood lead or total urinary arsenic and bone loss. Front Endocrinol Lausanne 12:782174.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lim HS, Lee HH, Kim TH, Lee BR (2016) Relationship between heavy metal exposure and bone mineral density in Korean adult. J Bone Metab 23:223–231.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jalili C, Kazemi M, Taheri E, Mohammadi H, Boozari B, Hadi A, Moradi S (2020) Exposure to heavy metals and the risk of osteopenia or osteoporosis: a systematic review and meta-analysis. Osteoporos Int 31:1671–1682.

    Article  CAS  PubMed  Google Scholar 

  9. Scimeca M, Feola M, Romano L, Rao C, Gasbarra E, Bonanno E, Brandi ML, Tarantino U (2017) Heavy metals accumulation affects bone microarchitecture in osteoporotic patients. Environ Toxicol 32:1333–1342.

    Article  CAS  PubMed  Google Scholar 

  10. Corrado A, Cici D, Rotondo C, Maruotti N, Cantatore FP (2020) Molecular basis of bone aging. Int J Mol Sci 21:10.

    Article  CAS  Google Scholar 

  11. Michaelsson K, Wolk A, Byberg L, Arnlov J, Melhus H (2014) Intake and serum concentrations of alpha-tocopherol in relation to fractures in elderly women and men: 2 cohort studies. Am J Clin Nutr 99:107–114.

    Article  CAS  PubMed  Google Scholar 

  12. Hu D, Cheng L, Jiang W (2018) Fruit and vegetable consumption and the risk of postmenopausal osteoporosis: a meta-analysis of observational studies. Food Funct 9:2607–2616.

    Article  CAS  PubMed  Google Scholar 

  13. Domazetovic V, Marcucci G, Iantomasi T, Brandi ML, Vincenzini MT (2017) Oxidative stress in bone remodeling: role of antioxidants. Clin Cases Miner Bone Metab 14:209–216.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Odai T, Terauchi M, Hirose A, Kato K, Miyasaka N (2019) Bone mineral density in premenopausal women is associated with the dietary intake of alpha-tocopherol: a cross-sectional study. Nutrients 11:10.

    Article  CAS  Google Scholar 

  15. Cerullo F, Gambassi G, Cesari M (2012) Rationale for antioxidant supplementation in sarcopenia. J Aging Res 2012:316943.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kasai S, Ito A, Shindo K, Toyoshi T, Bando M (2015) High-dose alpha-tocopherol supplementation does not induce bone loss in normal rats. PLoS One 10:e0132059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lefèvre T, Haude M, Neumann F-J, Stangl K, Skurk C, Slagboom T, Sabaté M, Goicolea J, Barragan P, Cook S, Macia J-C, Windecker S (2018) Comparison of a novel biodegradable polymer sirolimus-eluting stent with a durable polymer everolimus-eluting stent. JACC Cardiovasc Interv 11:995–1002.

    Article  PubMed  Google Scholar 

  18. Looker AC, Orwoll ES, Johnston CC Jr, Lindsay RL, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP (1997) Prevalence of low femoral bone density in older US adults from NHANES III. J Bone Miner Res 12:1761–1768.

    Article  CAS  PubMed  Google Scholar 

  19. Li R, Xia J, Zhang XI, Gathirua-Mwangi WG, Guo J, Li Y, McKenzie S, Song Y (2018) associations of muscle mass and strength with all-cause mortality among US older adults. Med Sci Sports Exerc 50:458–467.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wallin M, Barregard L, Sallsten G, Lundh T, Karlsson MK, Lorentzon M, Ohlsson C, Mellstrom D (2016) Low-level cadmium exposure is associated with decreased bone mineral density and increased risk of incident fractures in elderly men: the MrOS Sweden study. J Bone Miner Res 31:732–741.

    Article  CAS  PubMed  Google Scholar 

  21. Lv YJ, Song J, Xiong LL, Huang R, Zhu P, Wang P, Liang XX, Tan JB, Wang J, Wu SX, Wei QZ, Yang XF (2021) Association of environmental cadmium exposure and bone remodeling in women over 50 years of age. Ecotoxicol Environ Saf 211:111897.

    Article  CAS  PubMed  Google Scholar 

  22. Kim ES, Shin S, Lee YJ, Ha IH (2021) Association between blood cadmium levels and the risk of osteopenia and osteoporosis in Korean post-menopausal women. Arch Osteoporos 16:22.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Galvez-Fernandez M, Grau-Perez M, Garcia-Barrera T, Ramirez-Acosta S, Gomez-Ariza JL, Perez-Gomez B, Galan-Labaca I, Navas-Acien A, Redon J, Briongos-Figuero LS, Duenas-Laita A, Perez-Castrillon JL, Tellez-Plaza M, Martin-Escudero JC (2021) Arsenic, cadmium, and selenium exposures and bone mineral density-related endpoints: the HORTEGA study. Free Radic Biol Med 162:392–400.

    Article  CAS  PubMed  Google Scholar 

  24. Horiguchi H, Oguma E, Sasaki S, Miyamoto K, Ikeda Y, Machida M, Kayama F (2005) Environmental exposure to cadmium at a level insufficient to induce renal tubular dysfunction does not affect bone density among female Japanese farmers. Environ Res 97:83–92.

    Article  CAS  PubMed  Google Scholar 

  25. Luo H, Gu R, Ouyang H, Wang L, Shi S, Ji Y, Bao B, Liao G, Xu B (2021) Cadmium exposure induces osteoporosis through cellular senescence, associated with activation of NF-kappaB pathway and mitochondrial dysfunction. Environ Pollut 290:118043.

    Article  CAS  PubMed  Google Scholar 

  26. Manolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31:266–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mulligan AA, Hayhoe RPG, Luben RN, Welch AA (2021) Positive associations of dietary intake and plasma concentrations of vitamin e with skeletal muscle mass, heel bone ultrasound attenuation and Fracture Risk in the EPIC-Norfolk cohort. Antioxidants (Basel) 10:2.

    Article  CAS  Google Scholar 

  28. Fujita K, Iwasaki M, Ochi H, Fukuda T, Ma C, Miyamoto T, Takitani K, Negishi-Koga T, Sunamura S, Kodama T, Takayanagi H, Tamai H, Kato S, Arai H, Shinomiya K, Itoh H, Okawa A, Takeda S (2012) Vitamin E decreases bone mass by stimulating osteoclast fusion. Nat Med 18:589–594.

    Article  CAS  PubMed  Google Scholar 

  29. Muhammad N, Luke DA, Shuid AN, Mohamed N, Soelaiman IN (2012) Two different isomers of vitamin e prevent bone loss in postmenopausal osteoporosis rat model. Evid Based Complement Alternat Med 2:161527.

    Article  Google Scholar 

  30. Wolf RL, Cauley JA, Pettinger M, Jackson R, Lacroix A, Leboff MS, Lewis CE, Nevitt MC, Simon JA, Stone KL, Wactawski-Wende J (2005) Lack of a relation between vitamin and mineral antioxidants and bone mineral density: results from the Women’s Health Initiative. Am J Clin Nutr 82:581–588.

    Article  CAS  PubMed  Google Scholar 

  31. Ahmad NS, Khalid BA, Luke DA, Ima Nirwana S (2005) Tocotrienol offers better protection than tocopherol from free radical-induced damage of rat bone. Clin Exp Pharmacol Physiol 32:761–770.

    Article  CAS  PubMed  Google Scholar 

  32. Kim DE, Cho SH, Park HM, Chang YK (2016) Relationship between bone mineral density and dietary intake of beta-carotene, vitamin C, zinc and vegetables in postmenopausal Korean women: a cross-sectional study. J Int Med Res 44:1103–1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang J, Hu X, Zhang J (2017) Associations between serum vitamin E concentration and bone mineral density in the US elderly population. Osteoporos Int 28:1245–1253.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Renjia Li.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Qu, H., Xu, J. et al. Association between dietary intake of α-tocopherol and cadmium related osteoporosis in population ≥ 50 years. J Bone Miner Metab 41, 501–511 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: