Skip to main content

Advertisement

Log in

A mysterious triangle of blood, bones, and nerves

  • Invited Review
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The relationship between bone tissue and bone marrow, which is responsible for hematopoiesis, is inseparable. Osteoblasts and osteocytes, which produce and consist of bone tissue, regulate the function of hematopoietic stem cells (HSC), the ancestors of all hematopoietic cells in the bone marrow. The peripheral nervous system finely regulates bone remodeling in bone tissue and modulates HSC function within the bone marrow, either directly or indirectly via modification of the HSC niche function. Peripheral nerve signals also play an important role in the development and progression of malignant tumors (including hematopoietic tumors) and normal tissues, and peripheral nerve control is emerging as a potential new therapeutic target. In this review, we summarize recent findings on the linkage among blood system, bone tissue, and peripheral nerves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Calvo W (1968) The innervation of the bone marrow in laboratory animals. Am J Anat 123:315–328. https://doi.org/10.1002/aja.1001230206

    Article  CAS  PubMed  Google Scholar 

  2. Pinho S, Frenette PS (2019) Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol 20:303–320. https://doi.org/10.1038/s41580-019-0103-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Torres LS, Asada N, Weiss MJ, Trumpp A, Suda T, Scadden DT, Ito K (2022) Recent advances in “sickle and niche” research - Tribute to Dr. Paul S Frenette Stem Cell Reports 17:1509–1535. https://doi.org/10.1016/j.stemcr.2022.06.004

    Article  Google Scholar 

  4. Nilsson SK, Johnston HM, Coverdale JA (2001) Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97:2293–2299. https://doi.org/10.1182/blood.v97.8.2293

    Article  CAS  PubMed  Google Scholar 

  5. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846. https://doi.org/10.1038/nature02040

    Article  CAS  PubMed  Google Scholar 

  6. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841. https://doi.org/10.1038/nature02041

    Article  CAS  PubMed  Google Scholar 

  7. Lymperi S, Horwood N, Marley S, Gordon MY, Cope AP, Dazzi F (2008) Strontium can increase some osteoblasts without increasing hematopoietic stem cells. Blood 111:1173–1181. https://doi.org/10.1182/blood-2007-03-082800

    Article  CAS  PubMed  Google Scholar 

  8. Ma YD, Park C, Zhao H, Oduro KA Jr, Tu X, Long F, Allen PM, Teitelbaum SL, Choi K (2009) Defects in osteoblast function but no changes in long-term repopulating potential of hematopoietic stem cells in a mouse chronic inflammatory arthritis model. Blood 114:4402–4410. https://doi.org/10.1182/blood-2008-12-196311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495:227–230. https://doi.org/10.1038/nature11926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481:457–462. https://doi.org/10.1038/nature10783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cao H, Cao B, Heazlewood CK, Domingues M, Sun X, Debele E, McGregor NE, Sims NA, Heazlewood SY, Nilsson SK (2019) Osteopontin is an important regulative component of the fetal bone marrow hematopoietic stem cell niche. Cells. https://doi.org/10.3390/cells8090985

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT, Bertoncello I, Bendall LJ, Simmons PJ, Haylock DN (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106:1232–1239. https://doi.org/10.1182/blood-2004-11-4422

    Article  CAS  PubMed  Google Scholar 

  13. Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495:231–235. https://doi.org/10.1038/nature11885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu VW, Saez B, Cook C, Lotinun S, Pardo-Saganta A, Wang YH, Lymperi S, Ferraro F, Raaijmakers MH, Wu JY, Zhou L, Rajagopal J, Kronenberg HM, Baron R, Scadden DT (2015) Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow. J Exp Med 212:759–774. https://doi.org/10.1084/jem.20141843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mizoguchi T, Pinho S, Ahmed J, Kunisaki Y, Hanoun M, Mendelson A, Ono N, Kronenberg HM, Frenette PS (2014) Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev Cell 29:340–349. https://doi.org/10.1016/j.devcel.2014.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu VW, Lymperi S, Oki T, Jones A, Swiatek P, Vasic R, Ferraro F, Scadden DT (2016) Distinctive Mesenchymal-Parenchymal Cell Pairings Govern B Cell Differentiation in the Bone Marrow. Stem Cell Reports 7:220–235. https://doi.org/10.1016/j.stemcr.2016.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rankin EB, Wu C, Khatri R, Wilson TL, Andersen R, Araldi E, Rankin AL, Yuan J, Kuo CJ, Schipani E, Giaccia AJ (2012) The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell 149:63–74. https://doi.org/10.1016/j.cell.2012.01.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42:606–615. https://doi.org/10.1016/j.bone.2007.12.224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sato M, Asada N, Kawano Y, Wakahashi K, Minagawa K, Kawano H, Sada A, Ikeda K, Matsui T, Katayama Y (2013) Osteocytes regulate primary lymphoid organs and fat metabolism. Cell Metab 18:749–758. https://doi.org/10.1016/j.cmet.2013.09.014

    Article  CAS  PubMed  Google Scholar 

  20. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737. https://doi.org/10.1038/nm0797-730

    Article  CAS  PubMed  Google Scholar 

  21. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648. https://doi.org/10.1038/367645a0

    Article  CAS  PubMed  Google Scholar 

  22. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H et al (2007) Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 25:1315–1321. https://doi.org/10.1038/nbt1350

    Article  CAS  PubMed  Google Scholar 

  23. Kode A, Manavalan JS, Mosialou I, Bhagat G, Rathinam CV, Luo N, Khiabanian H, Lee A, Murty VV, Friedman R, Brum A, Park D, Galili N, Mukherjee S, Teruya-Feldstein J, Raza A, Rabadan R, Berman E, Kousteni S (2014) Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts. Nature 506:240–244. https://doi.org/10.1038/nature12883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bowers M, Zhang B, Ho Y, Agarwal P, Chen CC, Bhatia R (2015) Osteoblast ablation reduces normal long-term hematopoietic stem cell self-renewal but accelerates leukemia development. Blood 125:2678–2688. https://doi.org/10.1182/blood-2014-06-582924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, Keyser CP, Clohisy DR, Adams DJ, O’Leary P, Mantyh PW (2002) Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience 113:155–166. https://doi.org/10.1016/s0306-4522(02)00165-3

    Article  CAS  PubMed  Google Scholar 

  26. Abeynayake N, Arthur A, Gronthos S (2021) Crosstalk between skeletal and neural tissues is critical for skeletal health. Bone 142:115645

    Article  CAS  PubMed  Google Scholar 

  27. Fujita S, Morikawa T, Tamaki S, Sezaki M, Takizawa H, Okamoto S, Kataoka K, Takubo K (2022) Quantitative analysis of sympathetic and nociceptive innervation across bone marrow regions in mice. Exp Hematol. https://doi.org/10.1016/j.exphem.2022.07.297

    Article  PubMed  Google Scholar 

  28. Lorenz MR, Brazill JM, Beeve AT, Shen I, Scheller EL (2021) A neuroskeletal atlas: spatial mapping and contextualization of axon subtypes innervating the long bones of C3H and B6 mice. J Bone Miner Res 36:1012–1025. https://doi.org/10.1002/jbmr.4273

    Article  PubMed  Google Scholar 

  29. Castaneda-Corral G, Jimenez-Andrade JM, Bloom AP, Taylor RN, Mantyh WG, Kaczmarska MJ, Ghilardi JR, Mantyh PW (2011) The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience 178:196–207. https://doi.org/10.1016/j.neuroscience.2011.01.039

    Article  CAS  PubMed  Google Scholar 

  30. Grills BL, Schuijers JA, Ward AR (1997) Topical application of nerve growth factor improves fracture healing in rats. J Orthop Res 15:235–242. https://doi.org/10.1002/jor.1100150212

    Article  CAS  PubMed  Google Scholar 

  31. Wang L, Zhou S, Liu B, Lei D, Zhao Y, Lu C, Tan A (2006) Locally applied nerve growth factor enhances bone consolidation in a rabbit model of mandibular distraction osteogenesis. J Orthop Res 24:2238–2245. https://doi.org/10.1002/jor.20269

    Article  CAS  PubMed  Google Scholar 

  32. Schinke T, Liese S, Priemel M, Haberland M, Schilling AF, Catala-Lehnen P, Blicharski D, Rueger JM, Gagel RF, Emeson RB, Amling M (2004) Decreased bone formation and osteopenia in mice lacking alpha-calcitonin gene-related peptide. J Bone Miner Res 19:2049–2056. https://doi.org/10.1359/JBMR.040915

    Article  CAS  PubMed  Google Scholar 

  33. Mrak E, Guidobono F, Moro G, Fraschini G, Rubinacci A, Villa I (2010) Calcitonin gene-related peptide (CGRP) inhibits apoptosis in human osteoblasts by beta-catenin stabilization. J Cell Physiol 225:701–708. https://doi.org/10.1002/jcp.22266

    Article  CAS  PubMed  Google Scholar 

  34. Wang L, Shi X, Zhao R, Halloran BP, Clark DJ, Jacobs CR, Kingery WS (2010) Calcitonin-gene-related peptide stimulates stromal cell osteogenic differentiation and inhibits RANKL induced NF-kappaB activation, osteoclastogenesis and bone resorption. Bone 46:1369–1379. https://doi.org/10.1016/j.bone.2009.11.029

    Article  CAS  PubMed  Google Scholar 

  35. Mori T, Ogata T, Okumura H, Shibata T, Nakamura Y, Kataoka K (1999) Substance P regulates the function of rabbit cultured osteoclast; increase of intracellular free calcium concentration and enhancement of bone resorption. Biochem Biophys Res Commun 262:418–422. https://doi.org/10.1006/bbrc.1999.1220

    Article  CAS  PubMed  Google Scholar 

  36. Wang L, Zhao R, Shi X, Wei T, Halloran BP, Clark DJ, Jacobs CR, Kingery WS (2009) Substance P stimulates bone marrow stromal cell osteogenic activity, osteoclast differentiation, and resorption activity in vitro. Bone 45:309–320. https://doi.org/10.1016/j.bone.2009.04.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Niedermair T, Schirner S, Seebroker R, Straub RH, Grassel S (2018) Substance modulates bone remodeling properties of murine osteoblasts and osteoclasts. Sci Rep 8:9199. https://doi.org/10.1038/s41598-018-27432-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Luo Y, Raible D, Raper JA (1993) Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75:217–227. https://doi.org/10.1016/0092-8674(93)80064-l

    Article  CAS  PubMed  Google Scholar 

  39. Behar O, Golden JA, Mashimo H, Schoen FJ, Fishman MC (1996) Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature 383:525–528. https://doi.org/10.1038/383525a0

    Article  CAS  PubMed  Google Scholar 

  40. Hayashi M, Nakashima T, Taniguchi M, Kodama T, Kumanogoh A, Takayanagi H (2012) Osteoprotection by semaphorin 3A. Nature 485:69–74. https://doi.org/10.1038/nature11000

    Article  CAS  PubMed  Google Scholar 

  41. Hayashi M, Nakashima T, Yoshimura N, Okamoto K, Tanaka S, Takayanagi H (2019) Autoregulation of osteocyte sema3a orchestrates estrogen action and counteracts bone aging. Cell Metab 29:627–637

    Article  CAS  PubMed  Google Scholar 

  42. Fukuda T, Takeda S, Xu R, Ochi H, Sunamura S et al (2013) Sema3A regulates bone-mass accrual through sensory innervations. Nature 497:490–493. https://doi.org/10.1038/nature12115

    Article  CAS  PubMed  Google Scholar 

  43. Bajayo A, Bar A, Denes A, Bachar M, Kram V, Attar-Namdar M, Zallone A, Kovacs KJ, Yirmiya R, Bab I (2012) Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual. Proc Natl Acad Sci U S A 109:15455–15460. https://doi.org/10.1073/pnas.1206061109

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chartier SR, Mitchell SAT, Majuta LA, Mantyh PW (2018) The changing sensory and sympathetic innervation of the young, adult and aging mouse femur. Neuroscience 387:178–190. https://doi.org/10.1016/j.neuroscience.2018.01.047

    Article  CAS  PubMed  Google Scholar 

  45. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317. https://doi.org/10.1016/s0092-8674(02)01049-8

    Article  CAS  PubMed  Google Scholar 

  46. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434:514–520. https://doi.org/10.1038/nature03398

    Article  CAS  PubMed  Google Scholar 

  47. Kajimura D, Hinoi E, Ferron M, Kode A, Riley KJ, Zhou B, Guo XE, Karsenty G (2011) Genetic determination of the cellular basis of the sympathetic regulation of bone mass accrual. J Exp Med 208:841–851. https://doi.org/10.1084/jem.20102608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sato T, Abe T, Chida D, Nakamoto N, Hori N, Kokabu S, Sakata Y, Tomaru Y, Iwata T, Usui M, Aiko K, Yoda T (2010) Functional role of acetylcholine and the expression of cholinergic receptors and components in osteoblasts. FEBS Lett 584:817–824. https://doi.org/10.1016/j.febslet.2010.01.001

    Article  CAS  PubMed  Google Scholar 

  49. Sato T, Abe T, Nakamoto N, Tomaru Y, Koshikiya N, Nojima J, Kokabu S, Sakata Y, Kobayashi A, Yoda T (2008) Nicotine induces cell proliferation in association with cyclin D1 up-regulation and inhibits cell differentiation in association with p53 regulation in a murine pre-osteoblastic cell line. Biochem Biophys Res Commun 377:126–130. https://doi.org/10.1016/j.bbrc.2008.09.114

    Article  CAS  PubMed  Google Scholar 

  50. Mandl P, Hayer S, Karonitsch T, Scholze P, Gyori D, Sykoutri D, Bluml S, Mocsai A, Poor G, Huck S, Smolen JS, Redlich K (2016) Nicotinic acetylcholine receptors modulate osteoclastogenesis. Arthritis Res Ther 18:63. https://doi.org/10.1186/s13075-016-0961-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mito K, Sato Y, Kobayashi T, Miyamoto K, Nitta E, Iwama A, Matsumoto M, Nakamura M, Sato K, Miyamoto T (2017) The nicotinic acetylcholine receptor alpha7 subunit is an essential negative regulator of bone mass. Sci Rep 7:45597. https://doi.org/10.1038/srep45597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Somm E, Guerardel A, Maouche K, Toulotte A, Veyrat-Durebex C, Rohner-Jeanrenaud F, Maskos U, Huppi PS, Schwitzgebel VM (2014) Concomitant alpha7 and beta2 nicotinic AChR subunit deficiency leads to impaired energy homeostasis and increased physical activity in mice. Mol Genet Metab 112:64–72. https://doi.org/10.1016/j.ymgme.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  53. Shi Y, Oury F, Yadav VK, Wess J, Liu XS, Guo XE, Murshed M, Karsenty G (2010) Signaling through the M(3) muscarinic receptor favors bone mass accrual by decreasing sympathetic activity. Cell Metab 11:231–238. https://doi.org/10.1016/j.cmet.2010.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pareyson D, Marchesi C (2009) Diagnosis, natural history, and management of Charcot-Marie-Tooth disease. Lancet Neurol 8:654–667. https://doi.org/10.1016/S1474-4422(09)70110-3

    Article  CAS  PubMed  Google Scholar 

  55. Pouwels S, de Boer A, Leufkens HG, Weber WE, Cooper C, de Vries F (2014) Risk of fracture in patients with charcot-marie-tooth disease. Muscle Nerve 50:919–924. https://doi.org/10.1002/mus.24240

    Article  PubMed  Google Scholar 

  56. Abdala R, Levi L, Longobardi V, Zanchetta MB (2020) Severe bone microarchitecture deterioration in a family with hereditary neuropathy: evidence of the key role of the mechanostat. Osteoporos Int 31:2477–2480. https://doi.org/10.1007/s00198-020-05674-9

    Article  CAS  PubMed  Google Scholar 

  57. Schwartzlow C, Kazamel M (2019) Hereditary sensory and autonomic neuropathies: adding more to the classification. Curr Neurol Neurosci Rep 19:52. https://doi.org/10.1007/s11910-019-0974-3

    Article  PubMed  Google Scholar 

  58. Maayan C, Bar-On E, Foldes AJ, Gesundheit B, Pollak RD (2002) Bone mineral density and metabolism in familial dysautonomia. Osteoporos Int 13:429–433. https://doi.org/10.1007/s001980200050

    Article  CAS  PubMed  Google Scholar 

  59. Maayan C, Becker Y, Gesundheit B, Girgis SI (2001) Calcitonin gene related peptide in familial dysautonomia. Neuropeptides 35:189–195. https://doi.org/10.1054/npep.2001.0863

    Article  CAS  PubMed  Google Scholar 

  60. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette PS (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124:407–421. https://doi.org/10.1016/j.cell.2005.10.041

    Article  CAS  PubMed  Google Scholar 

  61. Kawamori Y, Katayama Y, Asada N, Minagawa K, Sato M, Okamura A, Shimoyama M, Nakagawa K, Okano T, Tanimoto M, Kato S, Matsui T (2010) Role for vitamin D receptor in the neuronal control of the hematopoietic stem cell niche. Blood 116:5528–5535. https://doi.org/10.1182/blood-2010-04-279216

    Article  CAS  PubMed  Google Scholar 

  62. Asada N, Katayama Y, Sato M, Minagawa K, Wakahashi K, Kawano H, Kawano Y, Sada A, Ikeda K, Matsui T, Tanimoto M (2013) Matrix-embedded osteocytes regulate mobilization of hematopoietic stem/progenitor cells. Cell Stem Cell 12:737–747. https://doi.org/10.1016/j.stem.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  63. Lucas D, Bruns I, Battista M, Mendez-Ferrer S, Magnon C, Kunisaki Y, Frenette PS (2012) Norepinephrine reuptake inhibition promotes mobilization in mice: potential impact to rescue low stem cell yields. Blood 119:3962–3965. https://doi.org/10.1182/blood-2011-07-367102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kawano Y, Fukui C, Shinohara M, Wakahashi K, Ishii S, Suzuki T, Sato M, Asada N, Kawano H, Minagawa K, Sada A, Furuyashiki T, Uematsu S, Akira S, Uede T, Narumiya S, Matsui T, Katayama Y (2017) G-CSF-induced sympathetic tone provokes fever and primes antimobilizing functions of neutrophils via PGE2. Blood 129:587–597. https://doi.org/10.1182/blood-2016-07-725754

    Article  CAS  PubMed  Google Scholar 

  65. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo MM, Karlsson S, Iwama A, Nakauchi H (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147:1146–1158. https://doi.org/10.1016/j.cell.2011.09.053

    Article  CAS  PubMed  Google Scholar 

  66. Liu Y, Chen Q, Jeong HW, Han D, Fabian J, Drexler HCA, Stehling M, Scholer HR, Adams RH (2021) Dopamine signaling regulates hematopoietic stem and progenitor cell function. Blood 138:2051–2065. https://doi.org/10.1182/blood.2020010419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452:442–447. https://doi.org/10.1038/nature06685

    Article  CAS  PubMed  Google Scholar 

  68. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834. https://doi.org/10.1038/nature09262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lucas D, Scheiermann C, Chow A, Kunisaki Y, Bruns I, Barrick C, Tessarollo L, Frenette PS (2013) Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat Med 19:695–703. https://doi.org/10.1038/nm.3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Geiger H, de Haan G, Florian MC (2013) The ageing haematopoietic stem cell compartment. Nat Rev Immunol 13:376–389. https://doi.org/10.1038/nri3433

    Article  CAS  PubMed  Google Scholar 

  71. Maryanovich M, Zahalka AH, Pierce H, Pinho S, Nakahara F, Asada N, Wei Q, Wang X, Ciero P, Xu J, Leftin A, Frenette PS (2018) Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat Med 24:782–791. https://doi.org/10.1038/s41591-018-0030-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ho YH, Del Toro R, Rivera-Torres J, Rak J, Korn C et al (2019) Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging. Cell Stem Cell 25:407–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li H, Qu J, Zhu H, Wang J, He H, Xie X, Wu R, Lu Q (2021) CGRP regulates the age-related switch between osteoblast and adipocyte differentiation. Front Cell Dev Biol. 9:675503

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pierce H, Zhang D, Magnon C, Lucas D, Christin JR, Huggins M, Schwartz GJ, Frenette PS (2017) Cholinergic signals from the CNS regulate G-CSF-mediated hsc mobilization from bone marrow via a glucocorticoid signaling relay. Cell Stem Cell 20:648–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Garcia-Garcia A, Korn C, Garcia-Fernandez M, Domingues O, Villadiego J, Martin-Perez D, Isern J, Bejarano-Garcia JA, Zimmer J, Perez-Simon JA, Toledo-Aral JJ, Michel T, Airaksinen MS, Mendez-Ferrer S (2019) Dual cholinergic signals regulate daily migration of hematopoietic stem cells and leukocytes. Blood 133:224–236. https://doi.org/10.1182/blood-2018-08-867648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fielding C, Garcia-Garcia A, Korn C, Gadomski S, Fang Z, Reguera JL, Perez-Simon JA, Gottgens B, Mendez-Ferrer S (2022) Cholinergic signals preserve haematopoietic stem cell quiescence during regenerative haematopoiesis. Nat Commun 13:543. https://doi.org/10.1038/s41467-022-28175-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hill EL, Elde R (1991) Distribution of CGRP, VIP, D beta H, SP, and NPY-immunoreactive nerves in the periosteum of the rat. Cell Tissue Res 264:469–480. https://doi.org/10.1007/BF00319037

    Article  CAS  PubMed  Google Scholar 

  78. Gao X, Zhang D, Xu C, Li H, Caron KM, Frenette PS (2021) Nociceptive nerves regulate haematopoietic stem cell mobilization. Nature 589:591–596. https://doi.org/10.1038/s41586-020-03057-y

    Article  CAS  PubMed  Google Scholar 

  79. Zahalka AH, Arnal-Estape A, Maryanovich M, Nakahara F, Cruz CD, Finley LWS, Frenette PS (2017) Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358:321–326. https://doi.org/10.1126/science.aah5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hanoun M, Zhang D, Mizoguchi T, Pinho S, Pierce H, Kunisaki Y, Lacombe J, Armstrong SA, Duhrsen U, Frenette PS (2014) Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell 15:365–375. https://doi.org/10.1016/j.stem.2014.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Arranz L, Sanchez-Aguilera A, Martin-Perez D, Isern J, Langa X, Tzankov A, Lundberg P, Muntion S, Tzeng YS, Lai DM, Schwaller J, Skoda RC, Mendez-Ferrer S (2014) Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 512:78–81. https://doi.org/10.1038/nature13383

    Article  CAS  PubMed  Google Scholar 

  82. Baryawno N, Przybylski D, Kowalczyk MS, Kfoury Y, Severe N, Gustafsson K, Kokkaliaris KD, Mercier F, Tabaka M, Hofree M, Dionne D, Papazian A, Lee D, Ashenberg O, Subramanian A, Vaishnav ED, Rozenblatt-Rosen O, Regev A, Scadden DT (2019) A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177:1915–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tikhonova AN, Dolgalev I, Hu H, Sivaraj KK, Hoxha E et al (2019) The bone marrow microenvironment at single-cell resolution. Nature 569:222–228. https://doi.org/10.1038/s41586-019-1104-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Baccin C, Al-Sabah J, Velten L, Helbling PM, Grunschlager F, Hernandez-Malmierca P, Nombela-Arrieta C, Steinmetz LM, Trumpp A, Haas S (2020) Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat Cell Biol 22:38–48. https://doi.org/10.1038/s41556-019-0439-6

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by AMED (Grant Number JP22gm1510001 to N.A. and Y.K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Noboru Asada or Yoshio Katayama.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asada, N., Katayama, Y. A mysterious triangle of blood, bones, and nerves. J Bone Miner Metab 41, 404–414 (2023). https://doi.org/10.1007/s00774-023-01402-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-023-01402-5

Keywords

Navigation