Skip to main content

Advertisement

Log in

Factors associated with clonal hematopoiesis and interaction with marrow environment

  • Invited Review
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Clonal hematopoiesis (CH) is an expansion of clones in individuals without any hematologic abnormalities, often carrying the driver mutations implicated in myeloid tumors, such as DNMT3A, TET2, and ASXL1. Most notably, CH is an age-related event, accounting for ~ 10% of cases in people over 60 years old. CH may also be correlated with a previous history of cancer treatment with chemotherapeutic drugs/radiation and infection episodes. The link between aging and CH acquisition is best explained by the enhanced inflammatory level in the bone marrow environment, which in turn expands hematopoietic cell clones with mutations in myeloid drivers. This positive feedback accounts for not only increased incidence of subsequent myeloid tumors in CH carriers but also for increased all-cause mortality and cardiovascular diseases (CVD). Recent evidence from large-scale epidemiological studies with genetic profiles, and mice models that recapitulate hematopoietic clones harboring driver gene mutations has revealed the detailed pathophysiology of CH clones represented by specific driver mutations, especially regarding expansion mechanisms under environmental factors and how they alter the environment. This review introduces the current knowledge of CH with a special focus on its interaction with the marrow environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Busque L, Mio R, Mattioli J, Brais E, Blais N, Lalonde Y, Maragh M, Gilliland DG (1996) Nonrandom X-inactivation patterns in normal females: lyonization ratios vary with age. Blood 88:59–65

    Article  CAS  PubMed  Google Scholar 

  2. Laurie CC, Laurie CA, Rice K, Doheny KF, Zelnick LR et al (2012) Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 44:642–650. https://doi.org/10.1038/ng.2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jacobs KB, Yeager M, Zhou W, Wacholder S, Wang Z et al (2012) Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 44:651–658. https://doi.org/10.1038/ng.2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488–2498. https://doi.org/10.1056/NEJMoa1408617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xie M, Lu C, Wang J, McLellan MD, Johnson KJ et al (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20:1472–1478. https://doi.org/10.1038/nm.3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA et al (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371:2477–2487. https://doi.org/10.1056/NEJMoa1409405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao J, Ghimire A, Liesveld J (2021) Marrow failure and aging: The role of “Inflammaging.” Best Pract Res Clin Haematol 34:101283. https://doi.org/10.1016/j.beha.2021.101283

    Article  CAS  PubMed  Google Scholar 

  8. Ferrucci L, Fabbri E (2018) Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol 15:505–522. https://doi.org/10.1038/s41569-018-0064-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jaiswal S, Ebert BL (2019) Clonal hematopoiesis in human aging and disease. Science. https://doi.org/10.1126/science.aan4673

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mckerrell T, Park N, Moreno T, Grove CS, Ponstingl H, Stephens J, Crawley C, Craig J, Scott MA, Hodkinson C, Baxter J, Rad R, Forsyth DR, Quail MA, Zeggini E, Ouwehand W, Varela I, Vassiliou GS, Understanding Society Scientific G (2015) Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep 10:1239–1245. https://doi.org/10.1016/j.celrep.2015.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wong TN, Ramsingh G, Young AL, Miller CA, Touma W et al (2015) Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 518:552–555. https://doi.org/10.1038/nature13968

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi K, Wang F, Kantarjian H, Doss D, Khanna K et al (2017) Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncol 18:100–111. https://doi.org/10.1016/S1470-2045(16)30626-X

    Article  PubMed  Google Scholar 

  13. Bolton KL, Ptashkin RN, Gao T, Braunstein L, Devlin SM et al (2020) Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet 52:1219–1226. https://doi.org/10.1038/s41588-020-00710-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen J, Matatall KA, Feng X, Hormaechea-Agulla D, Maharjan M, Young N, King KY (2020) Dnmt3a-null hematopoietic stem and progenitor cells expand after busulfan treatment. Exp Hematol 91:39–45. https://doi.org/10.1016/j.exphem.2020.09.192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zekavat SM, Lin SH, Bick AG, Liu A, Paruchuri K et al (2021) Hematopoietic mosaic chromosomal alterations increase the risk for diverse types of infection. Nat Med 27:1012–1024. https://doi.org/10.1038/s41591-021-01371-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dharan NJ, Yeh P, Bloch M, Yeung MM, Baker D et al (2021) HIV is associated with an increased risk of age-related clonal hematopoiesis among older adults. Nat Med 27:1006–1011. https://doi.org/10.1038/s41591-021-01357-y

    Article  CAS  PubMed  Google Scholar 

  17. Ren Y, Xiao F, Cheng F, Huang X, Li J, Wang X, Lang W, Zhou X, Lan J, Tong H (2021) Whole exome sequencing reveals a novel LRBA mutation and clonal hematopoiesis in a common variable immunodeficiency patient presented with hemophagocytic lymphohistiocytosis. Exp Hematol Oncol 10:38. https://doi.org/10.1186/s40164-021-00229-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rodriguez-Hernandez G, Hauer J, Martin-Lorenzo A, Schafer D, Bartenhagen C et al (2017) Infection Exposure Promotes ETV6-RUNX1 Precursor B-cell Leukemia via Impaired H3K4 Demethylases. Can Res 77:4365–4377. https://doi.org/10.1158/0008-5472.CAN-17-0701

    Article  CAS  Google Scholar 

  19. Kristinsson SY, Bjorkholm M, Hultcrantz M, Derolf AR, Landgren O, Goldin LR (2011) Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes. J Clin Oncol 29:2897–2903. https://doi.org/10.1200/JCO.2011.34.8540

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dawoud AAZ, Tapper WJ, Cross NCP (2020) Clonal myelopoiesis in the UK Biobank cohort: ASXL1 mutations are strongly associated with smoking. Leukemia 34:2660–2672. https://doi.org/10.1038/s41375-020-0896-8

    Article  CAS  PubMed  Google Scholar 

  21. Jasra S, Giricz O, Zeig-Owens R, Pradhan K, Goldfarb DG et al (2022) High burden of clonal hematopoiesis in first responders exposed to the world trade center disaster. Nat Med 28:468–471. https://doi.org/10.1038/s41591-022-01708-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bick AG, Weinstock JS, Nandakumar SK, Fulco CP, Bao EL et al (2020) Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature 586:763–768. https://doi.org/10.1038/s41586-020-2819-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim PG, Niroula A, Shkolnik V, McConkey M, Lin AE et al (2021) Dnmt3a-mutated clonal hematopoiesis promotes osteoporosis. J Exp Med. https://doi.org/10.1084/jem.20211872

    Article  PubMed  PubMed Central  Google Scholar 

  24. Young AL, Tong RS, Birmann BM, Druley TE (2019) Clonal hematopoiesis and risk of acute myeloid leukemia. Haematologica 104:2410–2417. https://doi.org/10.3324/haematol.2018.215269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Loberg MA, Bell RK, Goodwin LO, Eudy E, Miles LA, SanMiguel JM, Young K, Bergstrom DE, Levine RL, Schneider RK, Trowbridge JJ (2019) Sequentially inducible mouse models reveal that Npm1 mutation causes malignant transformation of Dnmt3a-mutant clonal hematopoiesis. Leukemia 33:1635–1649. https://doi.org/10.1038/s41375-018-0368-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hormaechea-Agulla D, Matatall KA, Le DT, Kain B, Long X, Kus P, Jaksik R, Challen GA, Kimmel M, King KY (2021) Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFNgamma signaling. Cell Stem Cell 28:1428–1442. https://doi.org/10.1016/j.stem.2021.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gibson CJ, Kim HT, Zhao L, Murdock HM, Hambley B et al (2022) Donor clonal hematopoiesis and recipient outcomes after transplantation. J Clin Oncol 40:189–201. https://doi.org/10.1200/JCO.21.02286

    Article  CAS  PubMed  Google Scholar 

  28. Cai Z, Kotzin JJ, Ramdas B, Chen S, Nelanuthala S, Palam LR, Pandey R, Mali RS, Liu Y, Kelley MR, Sandusky G, Mohseni M, Williams A, Henao-Mejia J, Kapur R (2018) Inhibition of inflammatory signaling in tet2 mutant preleukemic cells mitigates stress-induced abnormalities and clonal hematopoiesis. Cell Stem Cell 23:833–849. https://doi.org/10.1016/j.stem.2018.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meisel M, Hinterleitner R, Pacis A, Chen L, Earley ZM et al (2018) Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 557:580–584. https://doi.org/10.1038/s41586-018-0125-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abegunde SO, Buckstein R, Wells RA, Rauh MJ (2018) An inflammatory environment containing TNFalpha favors Tet2-mutant clonal hematopoiesis. Exp Hematol 59:60–65. https://doi.org/10.1016/j.exphem.2017.11.002

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Q, Zhao K, Shen Q, Han Y, Gu Y, Li X, Zhao D, Liu Y, Wang C, Zhang X, Su X, Liu J, Ge W, Levine RL, Li N, Cao X (2015) Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 525:389–393. https://doi.org/10.1038/nature15252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG et al (2017) Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 377:111–121. https://doi.org/10.1056/NEJMoa1701719

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fuster JJ, MacLauchlan S, Zuriaga MA, Polackal MN, Ostriker AC, Chakraborty R, Wu CL, Sano S, Muralidharan S, Rius C, Vuong J, Jacob S, Muralidhar V, Robertson AA, Cooper MA, Andres V, Hirschi KK, Martin KA, Walsh K (2017) Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355:842–847. https://doi.org/10.1126/science.aag1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hsu YC, Chiu YC, Lin CC, Kuo YY, Hou HA, Tzeng YS, Kao CJ, Chuang PH, Tseng MH, Hsiao TH, Chou WC, Tien HF (2017) The distinct biological implications of Asxl1 mutation and its roles in leukemogenesis revealed by a knock-in mouse model. J Hematol Oncol 10:139. https://doi.org/10.1186/s13045-017-0508-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Uni M, Masamoto Y, Sato T, Kamikubo Y, Arai S, Hara E, Kurokawa M (2019) Modeling ASXL1 mutation revealed impaired hematopoiesis caused by derepression of p16Ink4a through aberrant PRC1-mediated histone modification. Leukemia 33:191–204. https://doi.org/10.1038/s41375-018-0198-6

    Article  CAS  PubMed  Google Scholar 

  36. Fujino T, Goyama S, Sugiura Y, Inoue D, Asada S et al (2021) Mutant ASXL1 induces age-related expansion of phenotypic hematopoietic stem cells through activation of Akt/mTOR pathway. Nat Commun 12:1826. https://doi.org/10.1038/s41467-021-22053-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bernard E, Nannya Y, Hasserjian RP, Devlin SM, Tuechler H et al (2020) Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med 26:1549–1556. https://doi.org/10.1038/s41591-020-1008-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saiki R, Momozawa Y, Nannya Y, Nakagawa MM, Ochi Y et al (2021) Combined landscape of single-nucleotide variants and copy number alterations in clonal hematopoiesis. Nat Med 27:1239–1249. https://doi.org/10.1038/s41591-021-01411-9

    Article  CAS  PubMed  Google Scholar 

  39. Hsu JI, Dayaram T, Tovy A, De Braekeleer E, Jeong M et al (2018) PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell Stem Cell 23:700–713. https://doi.org/10.1016/j.stem.2018.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yura Y, Miura-Yura E, Katanasaka Y, Min KD, Chavkin N, Polizio AH, Ogawa H, Horitani K, Doviak H, Evans MA, Sano M, Wang Y, Boroviak K, Philippos G, Domingues AF, Vassiliou G, Sano S, Walsh K (2021) The cancer therapy-related clonal hematopoiesis driver gene Ppm1d promotes inflammation and non-ischemic heart failure in mice. Circ Res 129:684–698. https://doi.org/10.1161/CIRCRESAHA.121.319314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tiedt R, Hao-Shen H, Sobas MA, Looser R, Dirnhofer S, Schwaller J, Skoda RC (2008) Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood 111:3931–3940. https://doi.org/10.1182/blood-2007-08-107748

    Article  CAS  PubMed  Google Scholar 

  42. Marnell CS, Bick A, Natarajan P (2021) Clonal hematopoiesis of indeterminate potential (CHIP): Linking somatic mutations, hematopoiesis, chronic inflammation and cardiovascular disease. J Mol Cell Cardiol 161:98–105. https://doi.org/10.1016/j.yjmcc.2021.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wolach O, Sellar RS, Martinod K, Cherpokova D, McConkey M et al (2018) Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aan8292

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kimishima Y, Misaka T, Yokokawa T, Wada K, Ueda K, Sugimoto K, Minakawa K, Nakazato K, Ishida T, Oshima M, Koide S, Shide K, Shimoda K, Iwama A, Ikeda K, Takeishi Y (2021) Clonal hematopoiesis with JAK2V617F promotes pulmonary hypertension with ALK1 upregulation in lung neutrophils. Nat Commun 12:6177. https://doi.org/10.1038/s41467-021-26435-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee SC, North K, Kim E, Jang E, Obeng E et al (2018) Synthetic lethal and convergent biological effects of cancer-associated spliceosomal gene mutations. Cancer Cell 34:225–241. https://doi.org/10.1016/j.ccell.2018.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zink F, Stacey SN, Norddahl GL, Frigge ML, Magnusson OT et al (2017) Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 130:742–752. https://doi.org/10.1182/blood-2017-02-769869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Agency for Medical Research and Development (AMED) (JP19ck0106353h0003 to Y.N.) and KAKENHI (JP18H02836 to Y.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhito Nannya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nannya, Y. Factors associated with clonal hematopoiesis and interaction with marrow environment. J Bone Miner Metab 41, 380–387 (2023). https://doi.org/10.1007/s00774-022-01380-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-022-01380-0

Keywords

Navigation