Skip to main content

Advertisement

Log in

The crosstalk between LINC01089 and hippo pathway inhibits osteosarcoma progression

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Osteosarcoma is the most common malignancy in children, with high morbidity worldwide. Researches indicated that long non-coding RNAs (lncRNAs) played crucial roles in various cancers. Nevertheless, study investigating lncRNA long intergenic non-protein coding RNA 1089 (LINC01089) in osteosarcoma is extremely rare. Thus, the research of LINC01089 is of great significance.

Materials and methods

qRT-PCR and western blot were done to test the expression of RNAs and proteins in osteosarcoma cells. Functional assays were carried out to evaluate biological behaviors of hFOB1.19 and osteosarcoma cells with or without LINC01089 knockdown and overexpression. In vitro and in vivo experiments in a rescue manner were performed to reveal the influences of LINC01089 and Hippo pathway on osteosarcoma cell phenotype and tumor growth.

Results

LINC01089 was down-regulated in osteosarcoma cells and overexpressing LINC01089 was validated to restrain cell growth in vitro and tumor growth in vivo. Additionally, silencing LINC01089 could exacerbate cell malignant behaviors. Correlation of LINC01089 and Hippo pathway was proved. Overexpressing LINC01089 could activate Hippo pathway to exert antitumor effects.

Conclusion

LINC01089 could restrain the progression of osteosarcoma through activating Hippo pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cho Y, Jung GH, Chung SH, Kim JY, Choi Y, Kim JD (2011) Long-term survivals of stage IIb osteosarcoma: a 20 year experience in a single institution (in eng). Clin Orthop Surg 3:48–54. https://doi.org/10.4055/cios.2011.3.1.48

    Article  PubMed  PubMed Central  Google Scholar 

  2. Savage SA, Mirabello L (2011) Using epidemiology and genomics to understand osteosarcoma etiology (in eng). Sarcoma 2011:548151. https://doi.org/10.1155/2011/548151

    Article  PubMed  PubMed Central  Google Scholar 

  3. Broadhead ML, Clark JC, Myers DE, Dass CR, Choong PF (2011) The molecular pathogenesis of osteosarcoma: a review (in eng). Sarcoma 2011:959248. https://doi.org/10.1155/2011/959248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mo JS, Park HW, Guan KL (2014) The hippo signaling pathway in stem cell biology and cancer (in eng). EMBO Rep 15:642–656. https://doi.org/10.15252/embr.201438638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Taha Z, Janse van Rensburg HJ, Yang X (2018) The hippo pathway: immunity and cancer (in eng). Cancers. https://doi.org/10.3390/cancers10040094

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jeong SH, Kim HB, Kim MC, Lee JM, Lee JH, Kim JH, Kim JW, Park WY, Kim SY, Kim JB, Kim H, Kim JM, Choi HS, Lim DS (2018) Hippo-mediated suppression of IRS2/AKT signaling prevents hepatic steatosis and liver cancer (in eng). J Clin Investig 128:1010–1025. https://doi.org/10.1172/jci95802

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dong L, Lin F, Wu W, Liu Y, Huang W (2018) Verteporfin inhibits YAP-induced bladder cancer cell growth and invasion via Hippo signaling pathway (in eng). Int J Med Sci 15:645–652. https://doi.org/10.7150/ijms.23460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hou L, Chen L, Fang L (2017) Scutellarin Inhibits proliferation, invasion, and tumorigenicity in human breast cancer cells by regulating HIPPO-YAP signaling pathway (in eng). Med Sci Monit 23:5130–5138. https://doi.org/10.12659/msm.904492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Renganathan A, Felley-Bosco E (2017) Long noncoding RNAs in cancer and therapeutic potential (in eng). Adv Exp Med Biol 1008:199–222. https://doi.org/10.1007/978-981-10-5203-3_7

    Article  CAS  PubMed  Google Scholar 

  10. Bhan A, Soleimani M, Mandal SS (2017) Long noncoding RNA and cancer: a new paradigm (in eng). Can Res 77:3965–3981. https://doi.org/10.1158/0008-5472.Can-16-2634

    Article  CAS  Google Scholar 

  11. Xiao J, Lv Y, Jin F, Liu Y, Ma Y, Xiong Y, Liu L, Zhang S, Sun Y, Tipoe GL, Hong A, Xing F, Wang X (2017) LncRNA HANR promotes tumorigenesis and increase of chemoresistance in hepatocellular carcinoma (in eng). Cell physiol biochem 43:1926–1938. https://doi.org/10.1159/000484116

    Article  CAS  PubMed  Google Scholar 

  12. Wei GH, Wang X (2017) lncRNA MEG3 inhibit proliferation and metastasis of gastric cancer via p53 signaling pathway (in eng). Eur Rev Med Pharmacol Sci 21:3850–3856

    PubMed  Google Scholar 

  13. Sas-Chen A, Aure MR, Leibovich L, Carvalho S, Enuka Y, Korner C, Polycarpou-Schwarz M, Lavi S, Nevo N, Kuznetsov Y, Yuan J, Azuaje F, Ulitsky I, Diederichs S, Wiemann S, Yakhini Z, Kristensen VN, Borresen-Dale AL, Yarden Y (2016) LIMT is a novel metastasis inhibiting lncRNA suppressed by EGF and downregulated in aggressive breast cancer (in eng). EMBO Mol Med 8:1052–1064. https://doi.org/10.15252/emmm.201606198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sinegubova MV, Orlova NA, Kovnir SV, Dayanova LK, Vorobiev II (2021) High-level expression of the monomeric SARS-CoV-2 S protein RBD 320–537 in stably transfected CHO cells by the EEF1A1-based plasmid vector (in eng). PLoS ONE 16:e0242890. https://doi.org/10.1371/journal.pone.0242890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dey A, Varelas X, Guan KL (2020) Targeting the hippo pathway in cancer, fibrosis, wound healing and regenerative medicine (in eng). Nat Rev Drug Discov 19:480–494. https://doi.org/10.1038/s41573-020-0070-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Calses PC, Crawford JJ, Lill JR, Dey A (2019) Hippo pathway in cancer: aberrant regulation and therapeutic opportunities (in eng). Trends in cancer 5:297–307. https://doi.org/10.1016/j.trecan.2019.04.001

    Article  CAS  PubMed  Google Scholar 

  17. Al-Rugeebah A, Alanazi M, Parine NR (2019) MEG3: an Oncogenic long non-coding rna in different cancers (in eng). Pathol oncol res Pathology 25:859–874. https://doi.org/10.1007/s12253-019-00614-3

    Article  CAS  Google Scholar 

  18. Zhang C, Hao Y, Wang Y, Xu J, Teng Y, Yang X (2018) TGF-β/SMAD4-regulated LncRNA-LINP1 inhibits epithelial-mesenchymal transition in lung cancer (in eng). Int J Biol Sci 14:1715–1723. https://doi.org/10.7150/ijbs.27197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu K, Hou Y, Liu Y, Zheng J (2017) LncRNA SNHG15 contributes to proliferation, invasion and autophagy in osteosarcoma cells by sponging miR-141 (in eng). J Biomed Sci 24:46. https://doi.org/10.1186/s12929-017-0353-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qu G, Ma Z, Tong W, Yang J (2018) LncRNA WWOXAS1 inhibits the proliferation, migration and invasion of osteosarcoma cells (in eng). Mol Med Rep 18:779–788. https://doi.org/10.3892/mmr.2018.9058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang W, Luo P, Guo W, Shi Y, Xu D, Zheng H, Jia L (2018) LncRNA SNHG20 knockdown suppresses the osteosarcoma tumorigenesis through the mitochondrial apoptosis pathway by miR-139/RUNX2 axis (in eng). Biochem Biophys Res Commun 503:1927–1933. https://doi.org/10.1016/j.bbrc.2018.07.137

    Article  CAS  PubMed  Google Scholar 

  22. Meng Z, Moroishi T, Guan KL (2016) Mechanisms of Hippo pathway regulation (in eng). Genes Dev 30:1–17. https://doi.org/10.1101/gad.274027.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zygulska AL, Krzemieniecki K, Pierzchalski P (2017) Hippo pathway - brief overview of its relevance in cancer (in eng). J physiol pharmacol 68:311–335

    CAS  PubMed  Google Scholar 

  24. Fu V, Plouffe SW, Guan KL (2017) The Hippo pathway in organ development, homeostasis, and regeneration (in eng). Curr Opin Cell Biol 49:99–107. https://doi.org/10.1016/j.ceb.2017.12.012

    Article  CAS  PubMed  Google Scholar 

  25. Ahmed AA, Mohamed AD, Gener M, Li W, Taboada E (2017) YAP and the hippo pathway in pediatric cancer (in eng). Mol cell oncol 4:e1295127. https://doi.org/10.1080/23723556.2017.1295127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang M, Zhao Y, Zhang Y, Wang D, Gu S, Feng W, Peng W, Gong A, Xu M (2018) LncRNA UCA1 promotes migration and invasion in pancreatic cancer cells via the Hippo pathway (in eng). Biochim Biophys Acta 1864:1770–1782. https://doi.org/10.1016/j.bbadis.2018.03.005

    Article  CAS  Google Scholar 

  27. Wu DM, Wang S, Wen X, Han XR, Wang YJ, Shen M, Fan SH, Zhang ZF, Shan Q, Li MQ, Hu B, Lu J, Chen GQ, Zheng YL (2018) LncRNA SNHG15 acts as a ceRNA to regulate YAP1-Hippo signaling pathway by sponging miR-200a-3p in papillary thyroid carcinoma (in eng). Cell Death Dis 9:947. https://doi.org/10.1038/s41419-018-0975-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao W, Zhang LN, Wang XL, Zhang J, Yu HX (2019) Long noncoding RNA NSCLCAT1 increases non-small cell lung cancer cell invasion and migration through the hippo signaling pathway by interacting with CDH1 (in eng). FASEB J 33:1151–1166. https://doi.org/10.1096/fj.201800408R

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the support of our experimenters.

Funding

The study was supported by the National Natural Science Foundation of China (81973871); Supported by Shanghai Key Clinical Specialty “Orthopedics and Trauma of Traditional Chinese Medicine” (shslczdzk03901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoen Wei or Yongjun Wang.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhou, L., Hu, S. et al. The crosstalk between LINC01089 and hippo pathway inhibits osteosarcoma progression. J Bone Miner Metab 40, 890–899 (2022). https://doi.org/10.1007/s00774-022-01377-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-022-01377-9

Keywords

Navigation