Skip to main content

Advertisement

Log in

Effect of vitamin D3 vs. calcifediol on VDR concentration and fiber size in skeletal muscle

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

This study sought to examine the effect of vitamin D3 (VD3) 3200 IU/d, calcifediol (HyD) 20mcg/d, or placebo on intramyonuclear vitamin D receptor (VDR) concentration, muscle fiber cross-sectional area (FCSA), and muscle satellite cell activation.

Materials and methods

It was conducted on a subset of the VD3 (n = 12), HyD (n = 11), and placebo (n = 13) groups who participated in the 6-month randomized controlled HyD Osteopenia Study in postmenopausal women. Baseline and 6-month vastus lateralis muscle cross sections were probed for VDR, fiber type I and II, and PAX7 (satellite cell marker) using immunofluorescence.

Results

Baseline mean ± SD age was 61 ± 4 years and serum 25-hydroxyvitamin D (25OHD) level was 55.1 ± 22.8 nmol/L. Baseline characteristics did not differ significantly by group. Six-month mean ± SD 25OHD levels were 138.7 ± 22.2 nmol/L (VD3), 206.8 ± 68.8 nmol/L (HyD), and 82.7 ± 36.1 nmol/L (placebo), ANOVA P < 0.001. There were no significant group differences in 6-month change in VDR concentration (ANOVA P = 0.227). Mean ± SD percent 6-month changes in type I FCSA were 20.5 ± 32.7% (VD3), − 6.6 ± 20.4% (HyD), and − 0.3 ± 14.0% (placebo, ANOVA P = 0.022). Type II FCSA or PAX7 concentration did not change significantly by group (all P > 0.358).

Conclusion

This study demonstrated no significant change in intramyonuclear VDR in response to either form of vitamin D vs. placebo. Type I FCSA significantly increased with VD3, but not with HyD at 6 months. As type I fibers are more fatigue resistant than type II, enlargement in type I suggests potential for improved muscle endurance. Although HyD resulted in the highest 25OHD levels, no skeletal muscle benefits were noted at these high levels.

Clinical trial

NCT02527668.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Braga M, Simmons Z, Norris KC, Ferrini MG, Artaza JN (2017) Vitamin D induces myogenic differentiation in skeletal muscle derived stem cells. Endocr Connect 6:139–150. https://doi.org/10.1530/EC-17-0008

    Article  CAS  Google Scholar 

  2. Garcia LA, Ferrini MG, Norris KC, Artaza JN (2013) 1,25(OH)(2)vitamin D(3) enhances myogenic differentiation by modulating the expression of key angiogenic growth factors and angiogenic inhibitors in C(2)C(12) skeletal muscle cells (in eng). J Steroid Biochem Mol Biol 133:1–11. https://doi.org/10.1016/j.jsbmb.2012.09.004

    Article  CAS  Google Scholar 

  3. Girgis CM, Clifton-Bligh RJ, Mokbel N, Cheng K, Gunton JE (2014) Vitamin D signaling regulates proliferation, differentiation, and myotube size in C2C12 skeletal muscle cells. Endocrinology 155:347–357. https://doi.org/10.1210/en.2013-1205

    Article  Google Scholar 

  4. Girgis CM (2020) Vitamin D and skeletal muscle: emerging roles in development, anabolism and repair. Calcif Tissue Int 106:47–57. https://doi.org/10.1007/s00223-019-00583-4

    Article  CAS  Google Scholar 

  5. Latham CM, Brightwell CR, Keeble AR, Munson BD, Thomas NT, Zagzoog AM, Fry CS, Fry JL (2021) Vitamin D promotes skeletal muscle regeneration and mitochondrial health. Front Physiol 12:660498. https://doi.org/10.3389/fphys.2021.660498

    Article  Google Scholar 

  6. Bischoff HA, Borchers M, Gudat F, Duermueller U, Theiler R, Stahelin HB, Dick W (2001) In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue (in eng). Histochem J 33:19–24

    Article  CAS  Google Scholar 

  7. Buitrago C, Boland R (2010) Caveolae and caveolin-1 are implicated in 1alpha,25(OH)(2)-vitamin D(3)-dependent modulation of Src, MAPK cascades and VDR localization in skeletal muscle cells (in Eng). J Steroid Biochem Mol Biol. https://doi.org/10.1016/j.jsbmb.2010.03.002

    Article  Google Scholar 

  8. Wang Y, DeLuca HF (2011) Is the vitamin d receptor found in muscle? (in eng). Endocrinology 152:354–363. https://doi.org/10.1210/en.2010-1109

    Article  CAS  Google Scholar 

  9. Ceglia L, da Silva MM, Park LK, Morris E, Harris SS, Bischoff-Ferrari HA, Fielding RA, Dawson-Hughes B (2010) Multi-step immunofluorescent analysis of vitamin D receptor loci and myosin heavy chain isoforms in human skeletal muscle (in eng). J Mol Histol 41:137–142. https://doi.org/10.1007/s10735-010-9270-x

    Article  CAS  Google Scholar 

  10. Girgis CM, Mokbel N, Cha KM, Houweling PJ, Abboud M, Fraser DR, Mason RS, Clifton-Bligh RJ, Gunton JE (2014) The vitamin D receptor (VDR) is expressed in skeletal muscle of male mice and modulates 25-hydroxyvitamin D (25OHD) uptake in myofibers. Endocrinology 155:3227–3237. https://doi.org/10.1210/en.2014-1016

    Article  CAS  Google Scholar 

  11. Olsson K, Saini A, Stromberg A, Alam S, Lilja M, Rullman E, Gustafsson T (2016) Evidence for vitamin D receptor expression and direct effects of 1α,25(OH)2D3 in human skeletal muscle precursor cells. Endocrinology 157:98–111. https://doi.org/10.1210/en.2015-1685

    Article  CAS  Google Scholar 

  12. Chen S, Villalta SA, Agrawal DK (2016) FOXO1 mediates vitamin D deficiency-induced insulin resistance in skeletal muscle. J Bone Miner Res 31:585–595. https://doi.org/10.1002/jbmr.2729

    Article  CAS  Google Scholar 

  13. Girgis CM, Cha KM, So B, Tsang M, Chen J, Houweling PJ, Schindeler A, Stokes R, Swarbrick MM, Evesson FJ, Cooper ST, Gunton JE (2019) Mice with myocyte deletion of vitamin D receptor have sarcopenia and impaired muscle function. J Cachexia Sarcopenia Muscle 10:1228–1240. https://doi.org/10.1002/jcsm.12460

    Article  Google Scholar 

  14. Bass JJ, Nakhuda A, Deane CS, Brook MS, Wilkinson DJ, Phillips BE, Philp A, Tarum J, Kadi F, Andersen D, Garcia AM, Smith K, Gallagher IJ, Szewczyk NJ, Cleasby ME, Atherton PJ (2020) Overexpression of the vitamin D receptor (VDR) induces skeletal muscle hypertrophy. Mol Metab 42:101059. https://doi.org/10.1016/j.molmet.2020.101059

    Article  CAS  Google Scholar 

  15. Ceglia L, Niramitmahapanya S, da Silva MM, Rivas DA, Harris SS, Bischoff-Ferrari H, Fielding RA, Dawson-Hughes B (2013) A randomized study on the effect of vitamin D(3) supplementation on skeletal muscle morphology and vitamin D receptor concentration in older women. J Clin Endocrinol Metab 98:E1927–E1935. https://doi.org/10.1210/jc.2013-2820

    Article  CAS  Google Scholar 

  16. Navarro-Valverde C, Sosa-Henriquez M, Alhambra-Exposito MR, Quesada-Gomez JM (2016) Vitamin D3 and calcidiol are not equipotent. J Steroid Biochem Mol Biol 164:205–208. https://doi.org/10.1016/j.jsbmb.2016.01.014

    Article  CAS  Google Scholar 

  17. Perez-Castrillon JL, Duenas-Laita A, Brandi ML, Jodar E, Del Pino-Montes J, Quesada-Gomez JM, Cereto Castro F, Gomez-Alonso C, Gallego Lopez L, Olmos Martinez JM, Alhambra Exposito MR, Galarraga B, Gonzalez-Macias J, Bouillon R, Hernandez-Herrero G, Fernandez-Hernando N, Arranz-Gutierrez P, Chinchilla SP (2021) Calcifediol is superior to cholecalciferol in improving vitamin D status in postmenopausal women: a randomized trial. J Bone Miner Res. https://doi.org/10.1002/jbmr.4387

    Article  Google Scholar 

  18. Bischoff-Ferrari HA, Dawson-Hughes B, Stocklin E, Sidelnikov E, Willett WC, Edel JO, Stahelin HB, Wolfram S, Jetter A, Schwager J, Henschkowski J, von Eckardstein A, Egli A (2012) Oral supplementation with 25(OH)D3 versus vitamin D3: effects on 25(OH)D levels, lower extremity function, blood pressure, and markers of innate immunity. J Bone Miner Res 27:160–169. https://doi.org/10.1002/jbmr.551

    Article  CAS  Google Scholar 

  19. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL, Jones G, Kovacs CS, Mayne ST, Rosen CJ, Shapses SA (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know (in eng). J Clin Endocrinol Metab 96:53–58. https://doi.org/10.1210/jc.2010-2704

    Article  CAS  Google Scholar 

  20. Quack Lötscher KCIA D, Bischoff-Ferrari HA, Burckhardt P (2012) Vitamin-D deficiency: evidence, safety, and recommendations for the Swiss population. University of Zurich, Bern

    Google Scholar 

  21. Meyer O, Dawson-Hughes B, Sidelnikov E, Egli A, Grob D, Staehelin HB, Theiler G, Kressig RW, Simmen HP, Theiler R, Bischoff-Ferrari HA (2015) Calcifediol versus vitamin D3 effects on gait speed and trunk sway in young postmenopausal women: a double-blind randomized controlled trial. Osteoporos Int 26:373–381. https://doi.org/10.1007/s00198-014-2949-1

    Article  CAS  Google Scholar 

  22. Bischoff HA, Stahelin HB, Dick W, Akos R, Knecht M, Salis C, Nebiker M, Theiler R, Pfeifer M, Begerow B, Lew RA, Conzelmann M (2003) Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial (in eng). J Bone Miner Res 18:343–351

    Article  CAS  Google Scholar 

  23. Stoll T, Huber E, Seifert B, Michel BA, Stucki G (2000) Maximal isometric muscle strength: normative values and gender-specific relation to age. Clin Rheumatol 19:105–113. https://doi.org/10.1007/s100670050026

    Article  CAS  Google Scholar 

  24. Podsiadlo D, Richardson S (1991) The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39:142–148. https://doi.org/10.1111/j.1532-5415.1991.tb01616.x

    Article  CAS  Google Scholar 

  25. Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano KA, Rosner B, Kriska A, Willett WC (1994) Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol 23:991–999. https://doi.org/10.1093/ije/23.5.991

    Article  CAS  Google Scholar 

  26. Walker DK, Fry CS, Drummond MJ, Dickinson JM, Timmerman KL, Gundermann DM, Jennings K, Volpi E, Rasmussen BB (2012) PAX7+ satellite cells in young and older adults following resistance exercise. Muscle Nerve 46:51–59. https://doi.org/10.1002/mus.23266

    Article  Google Scholar 

  27. Srikuea R, Zhang X, Park-Sarge OK, Esser KA (2012) VDR and CYP27B1 are expressed in C2C12 cells and regenerating skeletal muscle: potential role in suppression of myoblast proliferation (in Eng). Am J Physiol Cell Physiol. https://doi.org/10.1152/ajpcell.00014.2012

    Article  Google Scholar 

  28. Weller MG (2016) Quality issues of research antibodies. Anal Chem Insights 11:21–27. https://doi.org/10.4137/ACI.S31614

    Article  CAS  Google Scholar 

  29. Pike JW (2016) Closing in on vitamin D action in skeletal muscle: early activity in muscle stem cells? Endocrinology 157:48–51. https://doi.org/10.1210/en.2015-2009

    Article  CAS  Google Scholar 

  30. Brooke MH, Kaiser KK (1970) Muscle fiber types: how many and what kind? (in eng). Arch Neurol 23:369–379

    Article  CAS  Google Scholar 

  31. Boersma D, Demontiero O, Mohtasham Amiri Z, Hassan S, Suarez H, Geisinger D, Suriyaarachchi P, Sharma A, Duque G (2012) Vitamin D status in relation to postural stability in the elderly. J Nutr Health Aging 16:270–275. https://doi.org/10.1007/s12603-011-0345-5

    Article  CAS  Google Scholar 

  32. Pfeifer M, Begerow B, Minne HW, Abrams C, Nachtigall D, Hansen C (2000) Effects of a short-term vitamin D and calcium supplementation on body sway and secondary hyperparathyroidism in elderly women (in eng). J Bone Miner Res 15:1113–1118

    Article  CAS  Google Scholar 

  33. Pfeifer M, Begerow B, Minne HW, Suppan K, Fahrleitner-Pammer A, Dobnig H (2008) Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals (in Eng). Osteoporos Int. https://doi.org/10.1007/s00198-008-0662-7

    Article  Google Scholar 

  34. Eriksen SS-LJ, HirataPedersenGraven-Nielsen RPKKT, Vestergaard P (2019) Effects of vitamin D supplementaiton on well-being, postural control, muscle strength, bone and calcitropic hormones—a randomized double blind placebo controlled trial. J Aging Res Clin Practice 8:49–56

    Google Scholar 

  35. Vaes AMM, Tieland M, Toussaint N, Nilwik R, Verdijk LB, van Loon LJC, de Groot L (2018) Cholecalciferol or 25-hydroxycholecalciferol supplementation does not affect muscle strength and physical performance in prefrail and frail older adults. J Nutr 148:712–720. https://doi.org/10.1093/jn/nxy024

    Article  Google Scholar 

  36. Bislev LS, Grove-Laugesen D, Rejnmark L (2021) Vitamin D and muscle health: a systematic review and meta-analysis of randomized placebo-controlled trials. J Bone Miner Res 36:1651–1660. https://doi.org/10.1002/jbmr.4412

    Article  CAS  Google Scholar 

  37. Yoshikawa S, Nakamura T, Tanabe H, Imamura T (1979) Osteomalacic myopathy (in eng). Endocrinol Jpn 26:65–72

    Article  CAS  Google Scholar 

  38. Palmucci L, Bertolotto A, Doriguzzi C, Mongini T, Coda R (1982) Osteomalacic myopathy in a case of diffuse nodular lipomatosis of the small bowel (in eng). Acta Neurol Belg 82:65–71

    CAS  Google Scholar 

  39. Sorensen OH, Lund B, Saltin B, Lund B, Andersen RB, Hjorth L, Melsen F, Mosekilde L (1979) Myopathy in bone loss of ageing: improvement by treatment with 1 alpha-hydroxycholecalciferol and calcium (in eng). Clin Sci (Lond) 56:157–161

    Article  CAS  Google Scholar 

  40. Hayes A, Rybalka E, Debruin DA, Hanson ED, Scott D, Sanders K (2019) The effect of yearly-dose vitamin D supplementation on muscle function in mice. Nutrients. https://doi.org/10.3390/nu11051097

    Article  Google Scholar 

  41. Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, Nicholson GC (2010) Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial (in eng). JAMA 303:1815–1822. https://doi.org/10.1001/jama.2010.594

    Article  CAS  Google Scholar 

  42. Smith H, Anderson F, Raphael H, Maslin P, Crozier S, Cooper C (2007) Effect of annual intramuscular vitamin D on fracture risk in elderly men and women—a population-based, randomized, double-blind, placebo-controlled trial. Rheumatology (Oxford) 46:1852–1857. https://doi.org/10.1093/rheumatology/kem240

    Article  CAS  Google Scholar 

  43. Bischoff-Ferrari HA, Dawson-Hughes B, Orav EJ, Staehelin HB, Meyer OW, Theiler R, Dick W, Willett WC, Egli A (2016) Monthly high-dose vitamin D treatment for the prevention of functional decline: a randomized clinical trial. JAMA Intern Med 176:175–183. https://doi.org/10.1001/jamainternmed.2015.7148

    Article  Google Scholar 

  44. Dawson-Hughes B, Wang J, Barger K, Bischoff-Ferrari HA, Sempos CT, Durazo-Arvizu RA, Ceglia L (2022) Intra-trial mean 25(OH)D and PTH levels and risk of falling in older men and women in the Boston STOP IT trial. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgac012

    Article  Google Scholar 

  45. Zittermann A, Berthold HK, Pilz S (2021) The effect of vitamin D on fibroblast growth factor 23: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr 75:980–987. https://doi.org/10.1038/s41430-020-00725-0

    Article  CAS  Google Scholar 

  46. Burnett-Bowie SA, Leder BZ, Henao MP, Baldwin CM, Hayden DL, Finkelstein JS (2012) Randomized trial assessing the effects of ergocalciferol administration on circulating FGF23. Clin J Am Soc Nephrol 7:624–631. https://doi.org/10.2215/CJN.10030911

    Article  CAS  Google Scholar 

  47. Beckman MJ, Johnson JA, Goff JP, Reinhardt TA, Beitz DC, Horst RL (1995) The role of dietary calcium in the physiology of vitamin D toxicity: excess dietary vitamin D3 blunts parathyroid hormone induction of kidney 1-hydroxylase. Arch Biochem Biophys 319:535–539. https://doi.org/10.1006/abbi.1995.1328

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Rahul Sangar for technical assistance with the skeletal muscle biopsy processing and immunofluorescent staining. We also thank Jonathan Pun for technical assistance with the VDR and PAX7 analyses. This research was supported by the DSM Nutritional Products Ltd. DSM did not contribute to the design of study, interpretation of the muscle tissue data, or writing of the manuscript. This material is also based upon work supported by the U.S. Department of Agriculture, Agricultural Research Service, under agreement No. 58-1950-7-707. Any opinions, findings, conclusion, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Dept of Agriculture.

Author information

Authors and Affiliations

Authors

Contributions

LC, DAR, HB-F, and BD-H designed the research; LC, DAR, MS, GBF, and AE conducted the research; LC, DAR, and GBF analyzed muscle samples or performed statistical analysis; all authors contributed to the writing of the manuscript; LC had primary responsibility for the final content. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Lisa Ceglia.

Ethics declarations

Conflict of interest

DAR, MS, GBF, and AE—none; LC, HB-F, and BDH – received investigator-initiated funding from DSM Nutritional Products. HB-F received speaker/travel honoraria from OM Pharma, Vifor, Wild, and EULAR guideline meeting, and served on the boards of Harvard Minding our Future Healthy Ageing, ProSenectute, and Swiss Association against Osteoporosis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 67 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceglia, L., Rivas, D.A., Schlögl, M. et al. Effect of vitamin D3 vs. calcifediol on VDR concentration and fiber size in skeletal muscle. J Bone Miner Metab 41, 41–51 (2023). https://doi.org/10.1007/s00774-022-01374-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-022-01374-y

Keywords

Navigation