Skip to main content

Advertisement

Log in

Emerging role of m6A modification in osteogenesis of stem cells

  • Review Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The differentiation of stem cells into osteoblasts is a key link in the treatment of bone defects and other orthopedic diseases. N6-methyladenosine (m6A) modification, an important post-transcriptional modification, is a methylation that occurs at the N6 site of RNA adenylate. The modification plays a regulatory role in the growth and development of biological individuals, the directional differentiation of stem cells and the occurrence of diseases. It is involved in various processes of the fate decision of stem cells. And it regulates the development and constant renewal of bone and keeps bone homeostasis by controlling and maintaining the balance between osteogenesis and adipogenesis. Meanwhile, it also affects the progress of orthopedic-associated diseases such as degenerative osteoporosis and bone tumor. In this review, we mainly summarize the new findings of three key molecules including Writers, Erasers and Readers which regulate m6A modification, and the emerging role of m6A modification in determining the fate and directed differentiation potential of stem cells, especially highlight the regulatory mechanism of osteogenic differentiation, the balance between osteogenesis and adipogenesis and the occurrence and development of bone-related diseases. It may provide some important ideas about finding new strategies to recover from bone defect and degenerative bone disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. Azi ML, Aprato A, Santi I, Kfuri MJ, Masse A, Joeris A (2016) Autologous bone graft in the treatment of post-traumatic bone defects: a systematic review and meta-analysis. BMC Musculoskel Dis 17:1–10

    Google Scholar 

  2. Lee YC, Chan YH, Hsieh SC, Lew WZ, Feng SW (2019) Comparing the osteogenic potentials and bone regeneration capacities of bone marrow and dental pulp mesenchymal stem cells in a rabbit calvarial bone defect model. Int J Mol Sci 20:1–17

    Google Scholar 

  3. Cao L, Liu W, Zhong Y, Zhang Y, Gao D, He T, Liu Y, Zou Z, Mo Y, Peng S, Shuai C (2020) Linc02349 promotes osteogenesis of human umbilical cord-derived stem cells by acting as a competing endogenous RNA for miR-25-3p and miR-33b-5p. Cell Prolif 53:1–14

    Google Scholar 

  4. Yao Sun MCJZ (2019) The long noncoding RNA lnc-ob1 facilitates bone formation by upregulating Osterix in osteoblasts. Nat Metab 1:485–496

    PubMed  Google Scholar 

  5. He S, Yang S, Zhang Y, Li X, Gao D, Zhong Y, Cao L, Ma H, Liu Y, Li G, Peng S, Shuai C (2019) LncRNA ODIR1 inhibits osteogenic differentiation of hUC-MSCs through the FBXO25/H2BK120ub/H3K4me3/OSX axis. Cell Death Dis 10:1–16

    Google Scholar 

  6. Liu N, Zhang Z, Li L, Shen X, Sun B, Wang R, Zhong H, Shi Q, Wei L, Zhang Y, Wang Y, Xu C, Liu Y, Yuan W (2020) MicroRNA-181 regulates the development of Ossification of Posterior longitudinal ligament via Epigenetic Modulation by targeting PBX1. Theranostics 10:7492–7509

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu Y, Xie L, Wang M, Xiong Q, Guo Y, Liang Y, Li J, Sheng R, Deng P, Wang Y, Zheng R, Jiang Y, Ye L, Chen Q, Zhou X, Lin S, Yuan Q (2018) Mettl3-mediated m(6)A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nat Commun 9:1–12

    Google Scholar 

  8. Chandola U, Das R, Panda B (2015) Role of the N6-methyladenosine RNA mark in gene regulation and its implications on development and disease. Brief Funct Genomics 14:169–179

    CAS  PubMed  Google Scholar 

  9. Wei W, Ji X, Guo X, Ji S (2017) Regulatory role of N(6) -methyladenosine (m(6) A) methylation in RNA processing and human diseases. J Cell Biochem 118:2534–2543

    CAS  PubMed  Google Scholar 

  10. Zhao BS, Roundtree IA, He C (2017) Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 18:31–42

    CAS  PubMed  Google Scholar 

  11. Desrosiers R, Friderici K, Rottman F (1974) Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA 71:3971–3975

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Meyer KD, Jaffrey SR (2017) Rethinking m(6)A readers, writers, and erasers. Annu Rev Cell Dev Biol 33:319–342

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM (1997) Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 3:1233–1247

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang P, Doxtader KA, Nam Y (2016) Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell 63:306–317

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, Dai Q, Chen W, He C (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10:93–95

    CAS  PubMed  Google Scholar 

  16. Scholler E, Weichmann F, Treiber T, Ringle S, Treiber N, Flatley A, Feederle R, Bruckmann A, Meister G (2018) Interactions, localization, and phosphorylation of the m(6)A generating METTL3-METTL14-WTAP complex. RNA 24:499–512

    PubMed  PubMed Central  Google Scholar 

  17. Ping XL, Sun BF, Wang L, Xiao W, Yang X et al (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24:177–189

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tian C, Huang Y, Li Q, Feng Z, Xu Q (2019) Mettl3 regulates osteogenic differentiation and alternative splicing of Vegfa in bone marrow mesenchymal stem cells. Int J Mol Sci 20:1–18

    Google Scholar 

  19. Wen J, Lv R, Ma H, Shen H, He C, Wang J, Jiao F, Liu H, Yang P, Tan L, Lan F, Shi YG, He C, Shi Y, Diao J (2018) Zc3h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell self-renewal. Mol Cell 69:1028–1038

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K et al (2014) Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5’ sites. Cell Rep 8:284–296

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Moindrot B, Cerase A, Coker H, Masui O, Grijzenhout A, Pintacuda G, Schermelleh L, Nesterova TB, Brockdorff N (2015) A pooled shRNA screen identifies Rbm15, Spen, and Wtap as factors required for Xist RNA-mediated silencing. Cell Rep 12:562–572

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP, Conrad NK (2017) The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169:824–835

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang H, Weng H, Zhou K, Wu T, Zhao BS et al (2019) Histone H3 trimethylation at lysine 36 guides m(6)A RNA modification co-transcriptionally. Nature 567:414–419

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Romano G, Veneziano D, Nigita G, Nana-Sinkam SP (2018) RNA methylation in ncRNA: classes, detection, and molecular associations. Front Genet 9:1–9

    CAS  Google Scholar 

  25. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, He C (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7:885–887

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang J, Fu Q, Yang J, Liu JL, Hou SM, Huang X, Cao JS, Liu TL, Wang KZ (2021) RNA N6-methyladenosine demethylase FTO promotes osteoporosis through demethylating Runx2 mRNA and inhibiting osteogenic differentiation. Aging (Albany NY) 13:21134–21141

    CAS  Google Scholar 

  27. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM et al (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49:18–29

    CAS  PubMed  Google Scholar 

  28. Ueda Y, Ooshio I, Fusamae Y, Kitae K, Kawaguchi M, Jingushi K, Hase H, Harada K, Hirata K, Tsujikawa K (2017) AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci Rep 7:1–10

    Google Scholar 

  29. Fu Y, Dominissini D, Rechavi G, He C (2014) Gene expression regulation mediated through reversible m(6)A RNA methylation. Natrev Genet 15:293–306

    CAS  Google Scholar 

  30. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C (2014) N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–120

    PubMed  Google Scholar 

  31. Xu C, Wang X, Liu K, Roundtree IA, Tempel W, Li Y, Lu Z, He C, Min J (2014) Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat Chem Biol 10:927–929

    CAS  PubMed  Google Scholar 

  32. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206

    CAS  PubMed  Google Scholar 

  33. Lence T, Akhtar J, Bayer M, Schmid K, Spindler L, Ho CH, Kreim N, Andrade-Navarro MA, Poeck B, Helm M, Roignant JY (2016) m(6)A modulates neuronal functions and sex determination in Drosophila. Nature 540:242–247

    CAS  PubMed  Google Scholar 

  34. Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, Qi M, Lu Z, Shi H, Wang J, Cheng Y, Luo G, Dai Q, Liu M, Guo X, Sha J, Shen B, He C (2017) Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res 27:1115–1127

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, Calderaro J, Bioulac-Sage P, Letexier M, Degos F, Clement B, Balabaud C, Chevet E, Laurent A, Couchy G, Letouze E, Calvo F, Zucman-Rossi J (2012) Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet 44:694–698

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen M, Wong CM (2020) The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis. Mol Cancer 19:1–12

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Alarcon CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF (2015) HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 162:1299–1308

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Alarcon CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF (2015) N6-methyladenosine marks primary microRNAs for processing. Nature 519:482–485

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T (2015) N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518:560–564

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen J, Fang X, Zhong P, Song Z, Hu X (2019) N6-methyladenosine modifications: interactions with novel RNA-binding proteins and roles in signal transduction. RNA Biol 16:991–1000

    PubMed  PubMed Central  Google Scholar 

  41. Tong J, Flavell RA, Li HB (2018) RNA m(6)A modification and its function in diseases. Front Med 12:481–489

    PubMed  Google Scholar 

  42. Wu R, Li A, Sun B, Sun JG, Zhang J et al (2019) A novel m(6)A reader Prrc2a controls oligodendroglial specification and myelination. Cell Res 29:23–41

    CAS  PubMed  Google Scholar 

  43. Yang D, Qiao J, Wang G, Lan Y, Li G, Guo X, Xi J, Ye D, Zhu S, Chen W, Jia W, Leng Y, Wan X, Kang J (2018) N6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential. Nucleic Acids Res 46:3906–3920

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N et al (2015) Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science 347:1002–1006

    CAS  PubMed  Google Scholar 

  45. Li Z, Qian P, Shao W, Shi H, He XC et al (2018) Suppression of m(6)A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Res 28:904–917

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Li D, Cai L, Meng R, Feng Z, Xu Q (2020) METTL3 modulates osteoclast differentiation and function by controlling RNA stability and nuclear export. Int J Mol Sci 21:1–18

    Google Scholar 

  47. Mapperley C, van de Lagemaat LN, Lawson H, Tavosanis A, Paris J, Campos J, Wotherspoon D, Durko J, Sarapuu A, Choe J, Ivanova I, Krause DS, von Kriegsheim A, Much C, Morgan M, Gregory RI, Mead AJ, O'Carroll D, Kranc KR (2021) The mRNA m6A reader YTHDF2 suppresses proinflammatory pathways and sustains hematopoietic stem cell function. J Exp Med 218:1–15

    Google Scholar 

  48. Bertero A, Brown S, Madrigal P, Osnato A, Ortmann D, Yiangou L, Kadiwala J, Hubner NC, de Los MI, Sadee C, Lenaerts AS, Nakanoh S, Grandy R, Farnell E, Ule J, Stunnenberg HG, Mendjan S, Vallier L (2018) The SMAD2/3 interactome reveals that TGFbeta controls m(6)A mRNA methylation in pluripotency. Nature 555:256–259

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Y, Wang R, Yao B, Hu T, Li Z, Liu Y, Cui X, Cheng L, Song W, Huang S, Fu X (2020) TNF-alpha suppresses sweat gland differentiation of MSCs by reducing FTO-mediated m(6)A-demethylation of Nanog mRNA. Sci China Life Sci 63:80–91

    CAS  PubMed  Google Scholar 

  50. Jiaying L, Qianqian Z, Jialyu H, Renfei C, Yanping K (2020) Hypoxia promotes vascular smooth muscle cell (VSMC) differentiation of adipose-derived stem cell (ADSC) by regulating mettl3 and paracrine factors. Stem Cells Int 2020:1–11

    Google Scholar 

  51. Sheng R, Wang Y, Wu Y, Wang J, Zhang S, Li Q, Zhang D, Qi X, Xiao Q, Jiang S, Yuan Q (2020) METTL3-mediated m(6) A mRNA methylation modulates tooth root formation via affecting NFIC translation. J Bone Miner Res 36:412–423

    PubMed  Google Scholar 

  52. Yoon KJ, Ringeling FR, Vissers C, Jacob F, Pokrass M et al (2017) Temporal control of mammalian cortical neurogenesis by m(6)A methylation. Cell 171:877–889

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Edens BM, Vissers C, Su J, Arumugam S, Xu Z, Shi H, Miller N, Rojas RF, Ming GL, He C, Song H, Ma YC (2019) FMRP modulates neural differentiation through m(6)A-dependent mRNA nuclear export. Cell Rep 28:845–854

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Song T, Yang Y, Wei H, Xie X, Lu J, Zeng Q, Peng J, Zhou Y, Jiang S, Peng J (2019) Zfp217 mediates m6A mRNA methylation to orchestrate transcriptional and post-transcriptional regulation to promote adipogenic differentiation. Nucleic Acids Res 47:6130–6144

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu Y, Zhou C, Yuan Q (2018) Role of DNA and RNA N6-adenine methylation in regulating stem cell fate. Curr Stem Cell Res Ther 13:31–38

    CAS  PubMed  Google Scholar 

  56. Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13:791–801

    CAS  PubMed  Google Scholar 

  57. Vrtacnik P, Marc J, Ostanek B (2014) Epigenetic mechanisms in bone. Clin Chem Lab Med 52:589–608

    CAS  PubMed  Google Scholar 

  58. Li SD, Zhai QL, Qiu LG (2011) Imbalance between bone formation and resorption in hematopoietic stem/progenitor cells mobilization. Transplant Proc 43:3920–3926

    PubMed  Google Scholar 

  59. Chen J, Qiu M, Dou C, Cao Z, Dong S (2015) MicroRNAs in bone balance and osteoporosis. Drug Dev Res 76:235–245

    CAS  PubMed  Google Scholar 

  60. Sheng R, Wang Y, Wu Y, Wang J, Zhang S, Li Q, Zhang D, Qi X, Xiao Q, Jiang S, Yuan Q (2021) METTL3-mediated m(6)A mRNA methylation modulates tooth root formation by affecting NFIC translation. J Bone Miner Res 36:412–423

    CAS  PubMed  Google Scholar 

  61. Yan G, Yuan Y, He M, Gong R, Lei H et al (2020) m(6)A methylation of precursor-miR-320/RUNX2 controls osteogenic potential of bone marrow-derived mesenchymal stem cells. Mol Ther Nucleic Acids 19:421–436

    CAS  PubMed  Google Scholar 

  62. Lei H, He M, He X, Li G, Wang Y, Gao Y, Yan G, Wang Q, Li T, Liu G, Du W (2021) METTL3 induces bone marrow mesenchymal stem cells osteogenic differentiation and migration through facilitating M1 macrophage differentiation. Am J Transl Res 13:4376–4388

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen J, Ning Y, Zhang H, Song N, Gu Y, Shi Y, Cai J, Ding X, Zhang X (2019) METTL14-dependent m6A regulates vascular calcification induced by indoxyl sulfate. Life Sci 239:117034

    CAS  PubMed  Google Scholar 

  64. Sun Z, Wang H, Wang Y, Yuan G, Yu X, Jiang H, Wu Q, Yang B, Hu Z, Shi F, Cao X (2021) MiR-103-3p targets the m(6) A methyltransferase METTL14 to inhibit osteoblastic bone formation. Aging Cell 20:1–15

    Google Scholar 

  65. Shen GS, Zhou HB, Zhang H, Chen B, Liu ZP, Yuan Y, Zhou XZ, Xu YJ (2018) The GDF11-FTO-PPARgamma axis controls the shift of osteoporotic MSC fate to adipocyte and inhibits bone formation during osteoporosis. Biochim Biophys Acta Mol Basis Dis 1864:3644–3654

    CAS  PubMed  Google Scholar 

  66. Li Z, Wang P, Li J, Xie Z, Cen S, Li M, Liu W, Ye G, Zheng G, Ma M, Wang S, Yu W, Wu Y, Shen H (2021) The N(6)-methyladenosine demethylase ALKBH5 negatively regulates the osteogenic differentiation of mesenchymal stem cells through PRMT6. Cell Death Dis 12:1–16

    PubMed  PubMed Central  Google Scholar 

  67. Zhang Q, Riddle RC, Yang Q, Rosen CR, Guttridge DC, Dirckx N, Faugere MC, Farber CR, Clemens TL (2019) The RNA demethylase FTO is required for maintenance of bone mass and functions to protect osteoblasts from genotoxic damage. Proc Natl Acad Sci USA 116:17980–17989

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Xiao S, Cao S, Huang Q, Xia L, Deng M, Yang M, Jia G, Liu X, Shi J, Wang W, Li Y, Liu S, Zhu H, Tan K, Luo Q, Zhong M, He C, Xia L (2019) The RNA N(6)-methyladenosine modification landscape of human fetal tissues. Nat Cell Biol 21:651–661

    CAS  PubMed  Google Scholar 

  69. Dai D, Wang H, Zhu L, Jin H, Wang X (2018) N6-methyladenosine links RNA metabolism to cancer progression. Cell Death Dis 9:1–13

    Google Scholar 

  70. Erson-Bensan AE, Begik O (2017) m6A Modification and Implications for microRNAs. Microrna 6:97–101

    CAS  PubMed  Google Scholar 

  71. Wang HF, Kuang MJ, Han SJ, Wang AB, Qiu J, Wang F, Tan BY, Wang DC (2020) BMP2 modified by the m(6)A demethylation enzyme ALKBH5 in the ossification of the ligamentum flavum through the AKT signaling pathway. Calcif Tissue Int

  72. Kim HY, Kim Y (2019) Associations of obesity with osteoporosis and metabolic syndrome in Korean postmenopausal women: a cross-sectional study using national survey data. Arch Osteoporos 14:1–9

    Google Scholar 

  73. Neglia C, Argentiero A, Chitano G, Agnello N, Ciccarese R, Vigilanza A, Pantile V, Argentiero D, Quarta R, Rivezzi M, Di Tanna GL, Di Somma C, Migliore A, Iolascon G, Gimigliano F, Distante A, Piscitelli P (2016) Diabetes and obesity as independent risk factors for osteoporosis: updated results from the ROIS/EMEROS registry in a population of five thousand post-menopausal women living in a region characterized by heavy environmental pressure. Int J Environ Res Public Health 13:1–11

    Google Scholar 

  74. Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW (2007) Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 92:1640–1646

    CAS  PubMed  Google Scholar 

  75. Choi YJ, Song I, Jin Y, Jin HS, Ji HM, Jeong SY, Won YY, Chung YS (2017) Transcriptional profiling of human femoral mesenchymal stem cells in osteoporosis and its association with adipogenesis. Gene 632:7–15

    CAS  PubMed  Google Scholar 

  76. Yao Y, Bi Z, Wu R, Zhao Y, Liu Y, Liu Q, Wang Y, Wang X (2019) METTL3 inhibits BMSC adipogenic differentiation by targeting the JAK1/STAT5/C/EBPbeta pathway via an m(6)A-YTHDF2-dependent manner. FASEB J 33:7529–7544

    CAS  PubMed  Google Scholar 

  77. Cao J, Ma Y, Yao W, Zhang X, Wu D (2017) Retinoids regulate adipogenesis involving the TGFbeta/SMAD and Wnt/beta-catenin pathways in human bone marrow mesenchymal stem cells. Int J Mol Sci 18:1–17

    Google Scholar 

  78. Cao Y, Gomes SA, Rangel EB, Paulino EC, Fonseca TL, Li J, Teixeira M, Gouveia CH, Bianco AC, Kapiloff MS, Balkan W, Hare JM (2015) S-nitrosoglutathione reductase-dependent PPARgamma denitrosylation participates in MSC-derived adipogenesis and osteogenesis. J Clin Invest 125:1679–1691

    PubMed  PubMed Central  Google Scholar 

  79. Day TF, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8:739–750

    CAS  PubMed  Google Scholar 

  80. Wu R, Liu Y, Yao Y, Zhao Y, Bi Z, Jiang Q, Liu Q, Cai M, Wang F, Wang Y, Wang X (2018) FTO regulates adipogenesis by controlling cell cycle progression via m(6)A-YTHDF2 dependent mechanism. Biochim Biophys Acta Mol Cell Biol Lipids 1863:1323–1330

    CAS  PubMed  Google Scholar 

  81. Erem S, Atfi A, Razzaque MS (2019) Anabolic effects of vitamin D and magnesium in aging bone. J Steroid Biochem Mol Biol 193:1–31

    Google Scholar 

  82. Mo XB, Zhang YH, Lei SF (2018) Genome-wide identification of m(6)A-associated SNPs as potential functional variants for bone mineral density. Osteoporos Int 29:2029–2039

    CAS  PubMed  Google Scholar 

  83. Endicott AA, Morimoto LM, Kline CN, Wiemels JL, Metayer C, Walsh KM (2017) Perinatal factors associated with clinical presentation of osteosarcoma in children and adolescents. Pediatr Blood Cancer 64:1–7

    Google Scholar 

  84. Meazza C, Scanagatta P (2016) Metastatic osteosarcoma: a challenging multidisciplinary treatment. Expert Rev Anticancer Ther 16:543–556

    CAS  PubMed  Google Scholar 

  85. Mirabello L, Troisi RJ, Savage SA (2009) International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int J Cancer 125:229–234

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Meyers PA, Heller G, Healey JH, Huvos A, Applewhite A, Sun M, LaQuaglia M (1993) Osteogenic sarcoma with clinically detectable metastasis at initial presentation. J Clin Oncol 11:449–453

    CAS  PubMed  Google Scholar 

  87. Sadykova LR, Ntekim AI, Muyangwa-Semenova M, Rutland CS, Jeyapalan JN, Blatt N, Rizvanov AA (2020) Epidemiology and risk factors of osteosarcoma. Cancer Invest 38:259–269

    PubMed  Google Scholar 

  88. Gianferante DM, Mirabello L, Savage SA (2017) Germline and somatic genetics of osteosarcoma—connecting aetiology, biology and therapy. Nat Rev Endocrinol 13:480–491

    CAS  PubMed  Google Scholar 

  89. Ritter J, Bielack SS (2010) Osteosarcoma. Ann Oncol 7:320–325

    Google Scholar 

  90. Mcinnes JD, Mccullough JF (1953) Osteolytic osteogenic sarcoma. Can Med Assoc J 68:377–379

    CAS  PubMed  PubMed Central  Google Scholar 

  91. van Wijnen AJ, Westendorf JJ (2019) Epigenetics as a new frontier in orthopedic regenerative medicine and oncology. J Orthop Res 37:1465–1474

    PubMed  PubMed Central  Google Scholar 

  92. Tu C, He J, Chen R, Li Z (2019) The emerging role of exosomal non-coding RNAs in musculoskeletal diseases. Curr Pharm Des 25:4523–4535

    CAS  PubMed  Google Scholar 

  93. Miao W, Chen J, Jia L, Ma J, Song D (2019) The m6A methyltransferase METTL3 promotes osteosarcoma progression by regulating the m6A level of LEF1. Biochem Biophys Res Commun 516:719–725

    CAS  PubMed  Google Scholar 

  94. Zhou L, Yang C, Zhang N, Zhang X, Zhao T, Yu J (2020) Silencing METTL3 inhibits the proliferation and invasion of osteosarcoma by regulating ATAD2. Biomed Pharmacother 125:1–9

    Google Scholar 

  95. Chen S, Zhou L, Wang Y (2020) ALKBH5-mediated m(6)A demethylation of lncRNA PVT1 plays an oncogenic role in osteosarcoma. Cancer Cell Int 20:1–10

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Carina V, Costa V, Sartori M, Bellavia D, De Luca A, Raimondi L, Fini M, Giavaresi G (2019) Adjuvant biophysical therapies in osteosarcoma. Cancers (Basel) 11:1–27

    Google Scholar 

  97. Li J, Rao B, Yang J, Liu L, Huang M, Liu X, Cui G, Li C, Han Q, Yang H, Cui X, Sun R (2020) Dysregulated m6A-related regulators are associated with tumor metastasis and poor prognosis in osteosarcoma. Front Oncol 10:1–13

    Google Scholar 

  98. Mi B, Xiong Y, Yan C, Chen L, Xue H, Panayi AC, Hu L, Hu Y, Zhou W, Cao F, Liu G (2020) Methyltransferase-like 3-mediated N6-methyladenosine modification of miR-7212-5p drives osteoblast differentiation and fracture healing. J Cell Mol Med 24:6385–6396

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Qi F, Zeng Z, Yao J, Cai W, Zhao Z, Peng S, Shuai C (2021) Constructing core-shell structured BaTiO3@carbon boosts piezoelectric activity and cell response of polymer scaffolds. Mater Sci Eng C Mater Biol Appl 126:112–129

    Google Scholar 

  100. Gao C, Zeng Z, Peng S, Shuai C (2020) Magnetostrictive alloys: promising materials for biomedical applications. Bioact Mater 8:177–195

    Google Scholar 

  101. Feng P, Kong Y, Liu M, Peng S, Shuai C (2021) Dispersion strategies for low-dimensional nanomaterials and their application in biopolymer implants. Materials Today Nano 15:100–127

    Google Scholar 

  102. Yang Y, Yang M, He C, Qi F, Wang D, Peng S, Shuai C (2021) Rare earth improves strength and creep resistance of additively manufactured Zn implants. Compos Part B: Eng 216:108882

    CAS  Google Scholar 

  103. Gao C, Yao M, Peng S, Tan W, Shuai C (2021) Pre-oxidation induced in situ interface strengthening in biodegradable Zn/nano-SiC composites prepared by selective laser melting. J Adv Res. https://doi.org/10.1016/j.jare.2021.09.014

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wang G, Qian G, Zan J, Qi F, Zhao Z, Yang W, Peng S, Shuai C (2021) A co-dispersion nanosystem of graphene oxide @silicon-doped hydroxyapatite to improve scaffold properties. Mater Design 199:1–11

    CAS  Google Scholar 

  105. Shuai C, He C, Qian G, Min A, Deng Y, Yang W, Zang X (2021) Mechanically driving supersaturated Fe–Mg solid solution for bone implant: preparation, solubility and degradation. Compos Part B-Eng 207:1–35

    Google Scholar 

  106. Shuai C, Zan J, Deng F, Yang Y, Peng S, Zhao Z (2021) Core–shell-structured ZIF-8@PDA-HA with controllable zinc ion release and superior bioactivity for improving a poly-l-lactic acid scaffold. Acs Sustain Chem Eng 9:1814–1825

    CAS  Google Scholar 

  107. Qi F, Wang C, Peng S, Shuai C, Yang W, Zhao Z (2021) A co-dispersed nanosystem from strontium-anchored reduced graphene oxide to enhance bioactivity and mechanical property in polymer scaffolds. Mater Chem Front 5:2373–2386

    CAS  Google Scholar 

  108. Xiang Y, Laurent B, Hsu CH, Nachtergaele S, Lu Z, Sheng W, Xu C, Chen H, Ouyang J, Wang S, Ling D, Hsu PH, Zou L, Jambhekar A, He C, Shi Y (2017) RNA m(6)A methylation regulates the ultraviolet-induced DNA damage response. Nature 543:573–576

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Shu X, Cao J, Cheng M, Xiang S, Gao M, Li T, Ying X, Wang F, Yue Y, Lu Z, Dai Q, Cui X, Ma L, Wang Y, He C, Feng X, Liu J (2020) A metabolic labeling method detects m6A transcriptome-wide at single base resolution. Nat Chem Biol 16:887–895

    CAS  PubMed  Google Scholar 

  110. Wang Y, Xiao Y, Dong S, Yu Q, Jia G (2020) Antibody-free enzyme-assisted chemical approach for detection of N6-methyladenosine. Nat Chem Biol 8:896–903

    Google Scholar 

  111. Shuai C, Cheng Y, Yang W, Feng P, Yang Y, He C, Qi F, Peng S (2020) Magnetically actuated bone scaffold: microstructure, cell response and osteogenesis. Compos Part B-Eng 192:1–11

    Google Scholar 

  112. Yang Y, Lu C, Shen L, Zhao Z, Peng S, Shuai C (2021) In-situ deposition of apatite layer to protect Mg-based composite fabricated via laser additive manufacturing. J Magnes Alloy. https://doi.org/10.1016/j.jma.2021.04.009

    Article  Google Scholar 

  113. Shuai C, He C, Peng S, Qi F, Wang G, Min A, Yang W, Wang W (2021) Mechanical alloying of immiscible metallic systems: process, microstructure, and mechanism. Adv Eng Mater 23:2001098

    CAS  Google Scholar 

  114. Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, Linder B, Pickering BF, Vasseur JJ, Chen Q, Gross SS (2017) Reversible methylation of m(6)Am in the 5’ cap controls mRNA stability. Neture 541:371–375

    CAS  Google Scholar 

  115. Joseph C, Quach JM, Walkley CR, Lane SW, Lo CC, Purton LE (2013) Deciphering hematopoietic stem cells in their niches: a critical appraisal of genetic models, lineage tracing, and imaging strategies. Cell Stem Cell 13:520–533

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 51935014, 81871498, 82072084, 81871494, 81572577), Jiangxi Provincial Natural Science Foundation of China (20192ACB20005), Innovation for graduate students of Central South University2020 (2020zzts774, 2020zzts223), The Hunan Provincial Innovation Foundation For Postgraduate (CX20210318), Innovation for graduate students of Central South University2021 (2021zzts0915).

Funding

This study was supported by the National Natural Science Foundation of China (No. 51935014, 81871498, 82072084, 81871494, 81572577), Jiangxi Provincial Natural Science Foundation of China (20192ACB20005), Innovation for graduate students of Central South University2020 (2020zzts774, 2020zzts223), the Hunan Provincial Innovation Foundation For Postgraduate (CX20210318), Innovation for graduate students of Central South University2021 (2021zzts0915).

Author information

Authors and Affiliations

Authors

Contributions

The idea for the article: SP and CS; drafted the work: ZZ; revised the work: TH and YL; literature search: LZ and YZ; data analysis: YM.

Corresponding authors

Correspondence to Shuping Peng or Cijun Shuai.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Authorship clarified

All authors agreed with the content and that all gave explicit consent to submit and that they obtained consent from the responsible authorities at the institute where the work has been carried out, before the work is submitted. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Z., He, T., Liu, Y. et al. Emerging role of m6A modification in osteogenesis of stem cells. J Bone Miner Metab 40, 177–188 (2022). https://doi.org/10.1007/s00774-021-01297-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-021-01297-0

Keywords

Navigation