Skip to main content

Advertisement

Log in

Upregulated miR-9-5p inhibits osteogenic differentiation of bone marrow mesenchymal stem cells under high glucose treatment

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Diabetic osteoporosis (DOP) is a chronic diabetic complication, which is attributed to high glucose (HG)-induced dysfunction of bone marrow mesenchymal stem cells (BMSCs). Studies have revealed that microRNAs (miRNAs) play critical roles in osteogenic differentiation of BMSCs in DOP. Here, the role of miR-9-5p in DOP progression was explored.

Materials and methods

The rat model of DOP was established by intraperitoneal injection of streptozotocin (STZ). BMSCs were treated with high glucose (HG) to establish in vitro models. Gene expression in BMSCs and bone tissues of rats was tested by RT-qPCR. The degree of osteogenic differentiation of BMSCs was examined by Alizarin Red staining and ALP activity analysis. The protein levels of collagen-I (COL1), osteocalcin (OCN), osteopontin (OPN), runt-related transcription factor-2 (RUNX2), and DEAD-Box Helicase 17 (DDX17) in BMSCs were evaluated by western blotting. The interaction between miR-9-5p and DDX17 was identified by luciferase reporter assay. H&E staining was used to test morphological structure of femurs of rats with STZ treatment.

Results

MiR-9-5p was overexpressed in HG-treated BMSCs, while DDX17 was downregulated. Functionally, miR-9-5p knockdown promoted BMSCs osteogenic differentiation under HG condition. Mechanically, miR-9-5p targeted DDX17. DDX17 knockdown reversed the effect of miR-9-5p silencing on osteogenic differentiation of HG-treated BMSCs. In in vivo studies, miR-9-5p downregulation ameliorated the DOP condition of rats and miR-9-5p expression was negatively correlated with DDX17 expression in bone tissues of rats with STZ treatment.

Conclusion

MiR-9-5p knockdown promotes HG-induced osteogenic differentiation BMSCs in vitro and mitigates the DOP condition of rats in vivo by targeting DDX17.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guthrie RA, Guthrie DW (2004) Pathophysiology of diabetes mellitus. Crit Care Nurs Q 27:113–125. https://doi.org/10.1097/00002727-200404000-00003

    Article  PubMed  Google Scholar 

  2. Gong F, Gao L, Ma L, Li G, Yang J (2021) Uncarboxylated osteocalcin alleviates the inhibitory effect of high glucose on osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells by regulating TP63. BMC Mol Cell Biol 22:24. https://doi.org/10.1186/s12860-021-00365-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Armas LA, Recker RR (2012) Pathophysiology of osteoporosis: new mechanistic insights. Endocrinol Metab Clin North Am 41:475–486. https://doi.org/10.1016/j.ecl.2012.04.006

    Article  CAS  PubMed  Google Scholar 

  4. Lane JM, Russell L, Khan SN (2000) Osteoporosis. Clin Orthopaed Relat Res. https://doi.org/10.1097/00003086-200003000-00016

    Article  Google Scholar 

  5. Schacter GI, Leslie WD (2021) Diabetes and osteoporosis: part II, clinical management. Endocrinol Metab Clin North Am 50:287–297. https://doi.org/10.1016/j.ecl.2021.03.006

    Article  PubMed  Google Scholar 

  6. Schacter GI, Leslie WD (2021) Diabetes and osteoporosis: part I, epidemiology and pathophysiology. Endocrinol Metab Clin North Am 50:275–285. https://doi.org/10.1016/j.ecl.2021.03.005

    Article  PubMed  Google Scholar 

  7. Zhang SJ, Song XY, He M, Yu SB (2016) Effect of TGF-β1/SDF-1/CXCR4 signal on BM-MSCs homing in rat heart of ischemia/perfusion injury. Eur Rev Med Pharmacol Sci 20:899–905

    PubMed  Google Scholar 

  8. Xiao K, Yang L, Xie W, Gao X, Huang R, Xie M (2021) Bcl-xL mutant promotes cartilage differentiation of BMSCs by upregulating TGF-β/BMP expression levels. Exp Ther Med 22:736. https://doi.org/10.3892/etm.2021.10168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gao G, Wu R, Liu R, Wang J, Ao Y, Xu Y (2021) Genes associated with inflammation and bone remodeling are highly expressed in the bone of patients with the early-stage cam-type femoroacetabular impingement. J Orthopaedic Surg Res 16:348. https://doi.org/10.1186/s13018-021-02499-y

    Article  Google Scholar 

  10. Ding X, Yang L, Hu Y, Yu J, Tang Y, Luo D, Zheng L (2019) Effect of local application of biphosphonates on improving peri-implant osseointegration in type-2 diabetic osteoporosis. Am J Trans Res 11:5417–5437

    CAS  Google Scholar 

  11. Liu B, Li J, Cairns MJ (2014) Identifying miRNAs, targets and functions. Brief Bioinform 15:1–19. https://doi.org/10.1093/bib/bbs075

    Article  CAS  PubMed  Google Scholar 

  12. Liu S, Yang X, Zhong X, Li L, Zhang X (2021) Involvement of miR-337 in high glucose-suppressed osteogenic differentiation in bone marrow mesenchymal stem cells via negative regulation of Rap1A. In Vitro Cell Dev Biol-Anim 57:350–358. https://doi.org/10.1007/s11626-021-00553-x

    Article  CAS  PubMed  Google Scholar 

  13. Zhai Z, Chen W, Hu Q, Wang X, Zhao Q, Tuerxunyiming M (2020) High glucose inhibits osteogenic differentiation of bone marrow mesenchymal stem cells via regulating miR-493-5p/ZEB2 signalling. J Biochem 167:613–621. https://doi.org/10.1093/jb/mvaa011

    Article  CAS  PubMed  Google Scholar 

  14. Qu B, He J, Zeng Z, Yang H, Liu Z, Cao Z, Yu H, Zhao W, Pan X (2020) MiR-155 inhibition alleviates suppression of osteoblastic differentiation by high glucose and free fatty acids in human bone marrow stromal cells by upregulating SIRT1. Eur J Physiol 472:473–480. https://doi.org/10.1007/s00424-020-02372-7

    Article  CAS  Google Scholar 

  15. Liu H, Zhou J, Jiang W, Wang F (2021) Analysis of the diagnostic and prognostic value of miR-9-5p in carotid artery stenosis. Bos J Basic Med Sci. https://doi.org/10.17305/bjbms.2021.5545

    Article  Google Scholar 

  16. Galluzzo A, Gallo S, Pardini B, Birolo G, Fariselli P, Boretto P, Vitacolonna A, Peraldo-Neia C, Spilinga M, Volpe A, Celentani D, Pidello S, Bonzano A, Matullo G, Giustetto C, Bergerone S, Crepaldi T (2021) Identification of novel circulating microRNAs in advanced heart failure by next-generation sequencing. ESC Heart Failure. https://doi.org/10.1002/ehf2.13371

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang Y, Dong L, Bao H, Liu Y, An F, Zhang GJ (2021) Inhibition of interleukin-1β plays a protective role in Alzheimer’s disease by promoting microRNA-9-5p and downregulating targeting protein for xenopus kinesin-like protein 2. Int Immunopharmacol 97:107578. https://doi.org/10.1016/j.intimp.2021.107578

    Article  CAS  PubMed  Google Scholar 

  18. Wang F, Chang S, Li J, Wang D, Li H, He X (2021) Lithium alleviated spinal cord injury (SCI)-induced apoptosis and inflammation in rats via BDNF-AS/miR-9-5p axis. Cell Tissue Res 384:301–312. https://doi.org/10.1007/s00441-020-03298-3

    Article  CAS  PubMed  Google Scholar 

  19. Ma J, Wu Y, He Y (2021) Silencing circRNA LRP6 down-regulates PRMT1 to improve the streptozocin-induced pancreatic β-cell injury and insulin secretion by sponging miR-9-5p. J Bioenerg Biomembr 53:333–342. https://doi.org/10.1007/s10863-021-09895-3

    Article  CAS  PubMed  Google Scholar 

  20. Li F, Dai B, Ni X (2020) Long non-coding RNA cancer susceptibility candidate 2 (CASC2) alleviates the high glucose-induced injury of CIHP-1 cells via regulating miR-9-5p/PPARγ axis in diabetes nephropathy. Diabetol Metab Syndr 12:68. https://doi.org/10.1186/s13098-020-00574-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martínez-Ibarra A, Martínez-Razo LD, Vázquez-Martínez ER, Martínez-Cruz N, Flores-Ramírez R, García-Gómez E, López-López M, Ortega-González C, Camacho-Arroyo I, Cerbón M (2019) Unhealthy levels of phthalates and bisphenol A in mexican pregnant women with gestational diabetes and its association to altered expression of miRNAs involved with metabolic disease. Int J Mol Sci. https://doi.org/10.3390/ijms20133343

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang R, Zhang Y, Jin F, Li G, Sun Y, Wang X (2019) High-glucose-induced miR-214-3p inhibits BMSCs osteogenic differentiation in type 1 diabetes mellitus. Cell Death Dis 5:143. https://doi.org/10.1038/s41420-019-0223-1

    Article  CAS  Google Scholar 

  23. Hitachi K, Nakatani M, Takasaki A, Ouchi Y, Uezumi A, Ageta H, Inagaki H, Kurahashi H, Tsuchida K (2019) Myogenin promoter-associated lncRNA Myoparr is essential for myogenic differentiation. EMBO Rep. https://doi.org/10.15252/embr.201847468

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fortuna TR, Kour S, Anderson EN, Ward C, Rajasundaram D, Donnelly CJ, Hermann A, Wyne H, Shewmaker F, Pandey UB (2021) DDX17 is involved in DNA damage repair and modifies FUS toxicity in an RGG-domain dependent manner. Acta Neuropathol 142:515–536. https://doi.org/10.1007/s00401-021-02333-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Caretti G, Schiltz RL, Dilworth FJ, Di Padova M, Zhao P, Ogryzko V, Fuller-Pace FV, Hoffman EP, Tapscott SJ, Sartorelli V (2006) The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell 11:547–560. https://doi.org/10.1016/j.devcel.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  26. Ma M, Huang DG, Liang X, Zhang L, Cheng S, Cheng B, Qi X, Li P, Du Y, Liu L, Zhao Y, Ding M, Wen Y, Guo X, Zhang F (2019) Integrating transcriptome-wide association study and mRNA expression profiling identifies novel genes associated with bone mineral density. Osteoporos Int 30:1521–1528. https://doi.org/10.1007/s00198-019-04958-z

    Article  CAS  PubMed  Google Scholar 

  27. Jensen ED, Niu L, Caretti G, Nicol SM, Teplyuk N, Stein GS, Sartorelli V, van Wijnen AJ, Fuller-Pace FV, Westendorf JJ (2008) p68 (Ddx5) interacts with Runx2 and regulates osteoblast differentiation. J Cell Biochem 103:1438–1451. https://doi.org/10.1002/jcb.21526

    Article  CAS  PubMed  Google Scholar 

  28. Marcon B, Rebelatto C, Cofré A, Dallagiovanna B, Correa A (2020) DDX6 helicase behavior and protein partners in human adipose tissue-derived stem cells during early adipogenesis and osteogenesis. Int Mol Sci. https://doi.org/10.3390/ijms21072607

    Article  Google Scholar 

  29. Zhang W, Zhang F, Shi H, Tan R, Han S, Ye G, Pan S, Sun F, Liu X (2014) Comparisons of rabbit bone marrow mesenchymal stem cell isolation and culture methods in vitro. PLOS ONE 9:e88794. https://doi.org/10.1371/journal.pone.0088794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang X, Mi Y, He W, Hu X, Yang S, Zhao L, Zhang Y, Wen B (2021) Down-regulation of miR-340-5p promoted osteogenic differentiation through regulation of runt-related transcription factor-2 (RUNX2) in MC3T3-E1 cells. Bioengineered 12:1126–1137. https://doi.org/10.1080/21655979.2021.1905259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gan K, Dong GH, Wang N, Zhu JF (2020) miR-221-3p and miR-222-3p downregulation promoted osteogenic differentiation of bone marrow mesenchyme stem cells through IGF-1/ERK pathway under high glucose condition. Diabetes Res Clin Pract 167:108121. https://doi.org/10.1016/j.diabres.2020.108121

    Article  CAS  PubMed  Google Scholar 

  32. Chen H, Fu T, Ma Y, Wu X, Li X, Li X, Shen J, Wang H (2017) Intermittent administration of parathyroid hormone ameliorated alveolar bone loss in experimental periodontitis in streptozotocin-induced diabetic rats. Arch Oral Biol 83:76–84. https://doi.org/10.1016/j.archoralbio.2017.06.033

    Article  CAS  PubMed  Google Scholar 

  33. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with “antagomirs.” Nature 438:685–689. https://doi.org/10.1038/nature04303

    Article  CAS  PubMed  Google Scholar 

  34. Xu R, Shen X, Si Y, Fu Y, Zhu W, Xiao T, Fu Z, Zhang P, Cheng J, Jiang H (2018) MicroRNA-31a-5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment. Aging Cell 17:e12794. https://doi.org/10.1111/acel.12794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fuller-Pace FV, Ali S (2008) The DEAD box RNA helicases p68 (Ddx5) and p72 (Ddx17): novel transcriptional co-regulators. Biochem Soc Trans 36:609–612. https://doi.org/10.1042/bst0360609

    Article  CAS  PubMed  Google Scholar 

  36. Connerty P, Bajan S, Remenyi J, Fuller-Pace FV, Hutvagner G (2016) The miRNA biogenesis factors, p72/DDX17 and KHSRP regulate the protein level of Ago2 in human cells. Biochem Biophys Acta 1859:1299–1305. https://doi.org/10.1016/j.bbagrm.2016.07.013

    Article  CAS  PubMed  Google Scholar 

  37. Al-Hariri MT, Al Goweiz R, Aldhafery B, Alsadah MM, Alkathim AS, AlQassab MZ, AlRammadan AH, AlElaq MA (2021) Potential cause affecting bone quality in Saudi Arabia: new insights. J Fam Med Prim Care 10:533–537. https://doi.org/10.4103/jfmpc.jfmpc_1872_20

    Article  Google Scholar 

  38. Iannuzzo G, De Filippo G, Merlotti D, Abate V, Buonaiuto A, Evangelista M, Gentile M, Giaquinto A, Picchioni T, Di Minno MND, Strazzullo P, Gennari L, Rendina D (2021) Effects of bisphosphonate treatment on circulating lipid and glucose levels in patients with metabolic bone disorders. Calcif Tissue Int 108:757–763. https://doi.org/10.1007/s00223-021-00811-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao J, Liu B, Li C (2020) Knockdown of long noncoding RNA GAS5 protects human cardiomyocyte-like AC16 cells against high glucose-induced inflammation by inhibiting miR-21-5p-mediated TLR4/NF-κB signaling. Naunyn Schmiedebergs Arch Pharmacol 393:1541–1547. https://doi.org/10.1007/s00210-019-01795-z

    Article  CAS  PubMed  Google Scholar 

  40. Xie C, Wu W, Tang A, Luo N, Tan Y (2019) lncRNA GAS5/miR-452-5p reduces oxidative stress and pyroptosis of high-glucose-stimulated renal tubular cells. Diab Meta Synd Obes Targets Ther 12:2609–2617. https://doi.org/10.2147/dmso.S228654

    Article  CAS  Google Scholar 

  41. Jia X, Yang M, Hu W, Cai S (2021) Overexpression of miRNA-22-3p attenuates osteoporosis by targeting MAPK14. Exp Ther Med 22:692. https://doi.org/10.3892/etm.2021.10124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu N, Lu W, Qu X, Zhu C (2021) LLLI promotes BMSC proliferation through circRNA_0001052/miR-124-3p. Lasers Med Sci. https://doi.org/10.1007/s10103-021-03322-0

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li J, Feng Z, Chen L, Wang X, Deng H (2016) MicroRNA-335-5p inhibits osteoblast apoptosis induced by high glucose. Mol Med Rep 13:4108–4112. https://doi.org/10.3892/mmr.2016.4994

    Article  CAS  PubMed  Google Scholar 

  44. You L, Gu W, Chen L, Pan L, Chen J, Peng Y (2014) MiR-378 overexpression attenuates high glucose-suppressed osteogenic differentiation through targeting CASP3 and activating PI3K/Akt signaling pathway. Int J Clin Exp Pathol 7:7249–7261

    PubMed  PubMed Central  Google Scholar 

  45. Zhang W, Wu Y, Shiozaki Y, Sugimoto Y, Takigawa T, Tanaka M, Matsukawa A, Ozaki T (2018) miRNA-133a-5p inhibits the expression of osteoblast differentiation-associated markers by targeting the 3’ UTR of RUNX2. DNA Cell Biol 37:199–209. https://doi.org/10.1089/dna.2017.3936

    Article  CAS  PubMed  Google Scholar 

  46. Wang C, Xu W, An J, Liang M, Li Y, Zhang F, Tong Q, Huang K (2019) Poly(ADP-ribose) polymerase 1 accelerates vascular calcification by upregulating Runx2. Nat Commun 10:1203. https://doi.org/10.1038/s41467-019-09174-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Luo H, Gao H, Liu F, Qiu B (2017) Regulation of Runx2 by microRNA-9 and microRNA-10 modulates the osteogenic differentiation of mesenchymal stem cells. Int J Mol Med 39:1046–1052. https://doi.org/10.3892/ijmm.2017.2918

    Article  CAS  PubMed  Google Scholar 

  48. Fuller-Pace FV (2013) The DEAD box proteins DDX5 (p68) and DDX17 (p72): multi-tasking transcriptional regulators. Biochem Biophys Acta 1829:756–763. https://doi.org/10.1016/j.bbagrm.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  49. Li K, Mo C, Gong D, Chen Y, Huang Z, Li Y, Zhang J, Huang L, Li Y, Fuller-Pace FV, Lin P, Wei Y (2017) DDX17 nucleocytoplasmic shuttling promotes acquired gefitinib resistance in non-small cell lung cancer cells via activation of β-catenin. Cancer Lett 400:194–202. https://doi.org/10.1016/j.canlet.2017.02.029

    Article  CAS  PubMed  Google Scholar 

  50. Day TF, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8:739–750. https://doi.org/10.1016/j.devcel.2005.03.016

    Article  CAS  PubMed  Google Scholar 

  51. Glass DA 2nd, Karsenty G (2006) Molecular bases of the regulation of bone remodeling by the canonical Wnt signaling pathway. Curr Top Dev Biol 73:43–84. https://doi.org/10.1016/s0070-2153(05)73002-7

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by Lianyungang Second People's Hospital Qinglan Inheritance Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongdao Xu.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Liu, M., Ding, Q. et al. Upregulated miR-9-5p inhibits osteogenic differentiation of bone marrow mesenchymal stem cells under high glucose treatment. J Bone Miner Metab 40, 208–219 (2022). https://doi.org/10.1007/s00774-021-01280-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-021-01280-9

Keywords

Navigation