Skip to main content

Modifiable lifestyle factors associated with fragility hip fracture: a systematic review and meta-analysis

Abstract

Introduction

Among the various hip fracture predictors explored to date, modifiable risk factors warrant special consideration, since they present promising targets for preventative measures. This systematic review and meta-analysis aims to assess various modifiable risk factors.

Material and methods

We searched four online databases in September 2017. We included studies that reported on modifiable lifestyle risk factors for sustaining fragility hip fractures. The quality of the included studies was assessed using the Newcastle–Ottawa Scale (NOS).

The inclusion criteria consisted of (1) adult patients with osteoporotic hip fracture, (2) original study, (3) availability of full text articles in English, and (4) report of a modifiable lifestyle risk factor.

Results

Thirty-five studies, containing 1,508,366 subjects in total, were included in this study. The modifiable risk factors that were significantly associated with an increased risk of hip fracture were the following: weight < 58 kg (128 lbs) (pooled OR 4.01, 95% CI 1.62–9.90), underweight body mass index (BMI) (< 18.5) (pooled OR 2.83, 95% CI 1.82–4.39), consumption of ≥ 3 cups of coffee daily (pooled OR 2.27, 95% CI 1.04–4.97), inactivity (pooled OR 2.14, 95% CI 1.21–3.77), weight loss (pooled OR 1.88, 95% CI 1.32–2.68), consumption of ≥ 27 g (approx. > 2 standard drinks) alcohol per day (pooled OR 1.54, 95% CI 1.12–2.13), and being a current smoker (pooled OR 1.50, 95% CI 1.22–1.85). Conversely, two factors were significantly associated with a decreased risk of hip fracture: obese BMI (> 30) (pooled OR 0.58, 95% CI 0.34–0.99) and habitual tea drinking (pooled OR 0.72, 95% CI 0.66–0.80).

Conclusion

Modifiable factors may be utilized clinically to provide more effective lifestyle interventions for at risk populations. We found that low weight and underweight BMI carried the highest risk, followed by high coffee consumption, inactivity, weight loss, and high daily alcohol consumption.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

Upon request, we can share our data and statistical coding.

References

  1. 1.

    Fisher ES, Baron JA, Malenka DJ et al (1991) Hip fracture incidence and mortality in New England. Epidemiology 2:116–122

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Hippisley-Cox J, Coupland C (2012) Derivation and validation of updated QFracture algorithm to predict risk of osteoporotic fracture in primary care in the United Kingdom: prospective open cohort study. BMJ 344:e3427

    PubMed  Article  Google Scholar 

  3. 3.

    Finsterwald M, Sidelnikov E, Orav EJ et al (2014) Gender-specific hip fracture risk in community-dwelling and institutionalized seniors age 65 years and older. Osteoporos Int 25:167–176

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Michaelsson K, Baron JA, Farahmand BY, Ljunghall S (2001) Influence of parity and lactation on hip fracture risk. Am J Epidemiol 153:1166–1172

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Espino DV, Silva Ross J, Oakes SL, Becho J, Wood RC (2008) Characteristics of hip fractures among hospitalized elder Mexican American Black and White Medicare beneficiaries in the Southwestern United States. Aging Clin Exp Res 20:344–348

    PubMed  Article  Google Scholar 

  6. 6.

    Makridis KG, Badras LS, Badras SL, Karachalios TS. Searching for the 'winner' hip fracture patient: the effect of modifiable and non-modifiable factors on clinical outcomes following hip fracture surgery. Hip Int. 2019:1120700019878814.

  7. 7.

    Albaba M, Cha SS, Takahashi PY (2012) The Elders Risk Assessment Index, an electronic administrative database-derived frailty index, can identify risk of hip fracture in a cohort of community-dwelling adults. Mayo Clin Proc 87:652–658

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    FitzGerald G, Compston JE, Chapurlat RD et al (2014) Empirically based composite fracture prediction model from the Global Longitudinal Study of Osteoporosis in Postmenopausal Women (GLOW). J Clin Endocrinol Metab 99:817–826

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Burns PB, Rohrich RJ, Chung KC (2011) The levels of evidence and their role in evidence-based medicine. Plast Reconstr Surg 128:305–310

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Mohamadi A, Chan JJ, Lian J et al (2018) Risk factors and pooled rate of prolonged opioid use following trauma or surgery: a systematic review and meta-(Regression) analysis. J Bone Joint Surg Am 100:1332–1340

    PubMed  Article  Google Scholar 

  11. 11.

    Ahuja K, Sen S, Dhanwal D (2017) Risk factors and epidemiological profile of hip fractures in Indian population: a case-control study. Osteoporos Sarcopenia 3:138–148

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Armstrong ME, Spencer EA, Cairns BJ et al (2011) Body mass index and physical activity in relation to the incidence of hip fracture in postmenopausal women. J Bone Miner Res 26:1330–1338

    PubMed  Article  Google Scholar 

  13. 13.

    Englund U, Nordstrom P, Nilsson J et al (2011) Physical activity in middle-aged women and hip fracture risk: the UFO study. Osteoporos Int 22:499–505

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Ensrud KE, Lipschutz RC, Cauley JA, et al. (1997) Body size and hip fracture risk in older women: a prospective study. Study of osteoporotic fractures research group. Am J Med 103(4):274–280.

  15. 15.

    Ensrud KE, Ewing SK, Stone KL et al (2003) Intentional and unintentional weight loss increase bone loss and hip fracture risk in older women. J Am Geriatr Soc 51:1740–1747

    PubMed  Article  Google Scholar 

  16. 16.

    Farahmand BY, Michaelsson K, Baron JA, Persson PG, Ljunghall S (2000) Body size and hip fracture risk Swedish hip fracture study group. Epidemiology 11:214–219

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Felson DT, Kiel DP, Anderson JJ, Kannel WB (1988) Alcohol consumption and hip fractures: the Framingham study. Am J Epidemiol 128:1102–1110

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Feskanich D, Willett WC, Stampfer MJ, Colditz GA (1997) Milk, dietary calcium, and bone fractures in women: a 12-year prospective study. Am J Public Health 87:992–997

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Feskanich D, Willett W, Colditz G (2002) Walking and leisure-time activity and risk of hip fracture in postmenopausal women. JAMA 288:2300–2306

    PubMed  Article  Google Scholar 

  20. 20.

    Feskanich D, Willett WC, Colditz GA (2003) Calcium, vitamin D, milk consumption, and hip fractures: a prospective study among postmenopausal women. Am J Clin Nutr 77:504–511

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Forsen L, Bjorndal A, Bjartveit K et al (1994) Interaction between current smoking, leanness, and physical inactivity in the prediction of hip fracture. J Bone Miner Res 9:1671–1678

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Forsen L, Bjartveit K, Bjorndal A, Edna TH, Meyer HE, Schei B (1998) Ex-smokers and risk of hip fracture. Am J Public Health 88:1481–1483

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Fujiwara S, Kasagi F, Yamada M, Kodama K (1997) Risk factors for hip fracture in a Japanese cohort. J Bone Miner Res 12:998–1004

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Gnudi S, Sitta E, Lisi L (2009) Relationship of body mass index with main limb fragility fractures in postmenopausal women. J Bone Miner Metab 27:479–484

    PubMed  Article  Google Scholar 

  25. 25.

    Gregson CL, Carson C, Amuzu A, Ebrahim S (2010) The association between graded physical activity in postmenopausal British women, and the prevalence and incidence of hip and wrist fractures. Age Ageing 39:565–574

    PubMed  Article  Google Scholar 

  26. 26.

    Grisso JA, Kelsey JL, O'Brien LA, et al. (1997) Risk factors for hip fracture in men. Hip Fracture Study Group. Am J Epidemiol.;145(9):786–793.

  27. 27.

    Hemenway D, Azrael DR, Rimm EB, Feskanich D, Willett WC (1994) Risk factors for hip fracture in US men aged 40 through 75 years. Am J Public Health 84:1843–1845

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Hernandez-Avila M, Colditz GA, Stampfer MJ, Rosner B, Speizer FE, Willett WC (1991) Caffeine, moderate alcohol intake, and risk of fractures of the hip and forearm in middle-aged women. Am J Clin Nutr 54:157–163

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Hillier S, Cooper C, Kellingray S, Russell G, Hughes H, Coggon D (2000) Fluoride in drinking water and risk of hip fracture in the UK: a case-control study. Lancet 355:265–269

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Holmberg AH, Johnell O, Nilsson PM, Nilsson JA, Berglund G, Akesson K (2005) Risk factors for hip fractures in a middle-aged population: a study of 33,000 men and women. Osteoporos Int 16:2185–2194

    PubMed  Article  Google Scholar 

  31. 31.

    Huang C, Tang R (2016) Tea drinking habits and osteoporotic hip/femur fractures: a case-control study. Pak J Med Sci 32:408–412

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Jacqmin-Gadda H, Fourrier A, Commenges D, Dartigues JF (1998) Risk factors for fractures in the elderly. Epidemiology 9:417–423

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Jaglal SB, Kreiger N, Darlington G (1993) Past and recent physical activity and risk of hip fracture. Am J Epidemiol 138:107–118

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Johnell O, Gullberg B, Kanis JA, et al. (1995) Risk factors for hip fracture in European women: the MEDOS Study. Mediterranean Osteoporosis Study. J Bone Miner Res 10(11):1802–1815.

  35. 35.

    Jokinen H, Pulkkinen P, Korpelainen J et al (2010) Risk factors for cervical and trochanteric hip fractures in elderly women: a population-based 10-year follow-up study. Calcif Tissue Int 87:44–51

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Kanis J, Johnell O, Gullberg B et al (1999) Risk factors for hip fracture in men from southern Europe: the MEDOS study Mediterranean osteoporosis study. Osteoporos Int 9:45–54

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Kreiger N, Gross A, Hunter G (1992) Dietary factors and fracture in postmenopausal women: a case-control study. Int J Epidemiol 21:953–958

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Suzuki T, Yoshida H, Hashimoto T et al (1997) Case-control study of risk factors for hip fractures in the Japanese elderly by a Mediterranean osteoporosis study (MEDOS) questionnaire. Bone 21:461–467

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Tanaka S, Kuroda T, Saito M, Shiraki M (2013) Overweight/obesity and underweight are both risk factors for osteoporotic fractures at different sites in Japanese postmenopausal women. Osteoporos Int 24:69–76

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Tseng WJ, Hung LW, Shieh JS, Abbod MF, Lin J (2013) Hip fracture risk assessment: artificial neural network outperforms conditional logistic regression in an age- and sex-matched case control study. BMC Musculoskelet Disord 14:207

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Turner LW, Wang MQ, Fu Q (1998) Risk factors for hip fracture among southern older women. South Med J 91:533–540

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Wengreen HJ, Munger RG, West NA et al (2004) Dietary protein intake and risk of osteoporotic hip fracture in elderly residents of Utah. J Bone Miner Res 19:537–545

    PubMed  Article  Google Scholar 

  43. 43.

    Zeng FF, Wu BH, Fan F et al (2013) Dietary patterns and the risk of hip fractures in elderly Chinese: a matched case-control study. J Clin Endocrinol Metab 98:2347–2355

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Zeng FF, Xie HL, Fan F et al (2015) Association of dietary fat intake with the risk of hip fractures in an elderly Chinese population: a matched case-control study. Geriatr Gerontol Int 15:1171–1178

    PubMed  Article  Google Scholar 

  45. 45.

    Robbins J, Aragaki AK, Kooperberg C et al (2007) Factors associated with 5-year risk of hip fracture in postmenopausal women. JAMA 298:2389–2398

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    What Is A Standard Drink? National Institute on Alcohol Abuse and Alcoholism. https://www.niaaa.nih.gov/what-standard-drink#:~:text=In%20the%20United%20States%2C%20one,which%20is%20about%2040%25%20alcohol. Accessed June 29, 2020.

  47. 47.

    De Laet C, Kanis JA, Oden A et al (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338

    PubMed  Article  Google Scholar 

  48. 48.

    Albala C, Yanez M, Devoto E, Sostin C, Zeballos L, Santos JL (1996) Obesity as a protective factor for postmenopausal osteoporosis. Int J Obes Relat Metab Disord 20:1027–1032

    CAS  PubMed  Google Scholar 

  49. 49.

    Felson DT, Zhang Y, Hannan MT, Anderson JJ (1993) Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res 8:567–573

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Compston J (2015) Obesity and fractures in postmenopausal women. Curr Opin Rheumatol 27:414–419

    PubMed  Article  Google Scholar 

  51. 51.

    Premaor MO, Pilbrow L, Tonkin C, Parker RA, Compston J (2010) Obesity and fractures in postmenopausal women. J Bone Miner Res 25:292–297

    PubMed  Article  Google Scholar 

  52. 52.

    Compston JE, Watts NB, Chapurlat R et al (2011) Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med 124:1043–1050

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Shapses SA, Sukumar D (2012) Bone metabolism in obesity and weight loss. Annu Rev Nutr 32:287–309

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Cao JJ (2011) Effects of obesity on bone metabolism. J Orthop Surg Res 6:30

    PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Liu SH, Chen C, Yang RS, Yen YP, Yang YT, Tsai C (2011) Caffeine enhances osteoclast differentiation from bone marrow hematopoietic cells and reduces bone mineral density in growing rats. J Orthop Res 29:954–960

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Huang TH, Yang RS, Hsieh SS, Liu SH (2002) Effects of caffeine and exercise on the development of bone: a densitometric and histomorphometric study in young Wistar rats. Bone 30:293–299

    PubMed  Article  Google Scholar 

  57. 57.

    Rapuri PB, Gallagher JC, Kinyamu HK, Ryschon KL (2001) Caffeine intake increases the rate of bone loss in elderly women and interacts with vitamin D receptor genotypes. Am J Clin Nutr 74:694–700

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Hallstrom H, Byberg L, Glynn A, Lemming EW, Wolk A, Michaelsson K (2013) Long-term coffee consumption in relation to fracture risk and bone mineral density in women. Am J Epidemiol 178:898–909

    PubMed  Article  Google Scholar 

  59. 59.

    Su SJ, Chang KL, Su SH, Yeh YT, Shyu HW, Chen KM (2013) Caffeine regulates osteogenic differentiation and mineralization of primary adipose-derived stem cells and a bone marrow stromal cell line. Int J Food Sci Nutr 64:429–436

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Folwarczna J, Pytlik M, Zych M et al (2013) Favorable effect of moderate dose caffeine on the skeletal system in ovariectomized rats. Mol Nutr Food Res 57:1772–1784

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Hallstrom H, Wolk A, Glynn A, Michaelsson K (2006) Coffee, tea and caffeine consumption in relation to osteoporotic fracture risk in a cohort of Swedish women. Osteoporos Int 17:1055–1064

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Hegarty VM, May HM, Khaw KT (2000) Tea drinking and bone mineral density in older women. Am J Clin Nutr 71:1003–1007

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Sheng J, Qu X, Zhang X et al (2014) Coffee, tea, and the risk of hip fracture: a meta-analysis. Osteoporos Int 25:141–150

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Shen CL, Wang P, Guerrieri J, Yeh JK, Wang JS (2008) Protective effect of green tea polyphenols on bone loss in middle-aged female rats. Osteoporos Int 19:979–990

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Park YH, Han DW, Suh H et al (2003) Protective effects of green tea polyphenol against reactive oxygen species-induced oxidative stress in cultured rat calvarial osteoblast. Cell Biol Toxicol 19:325–337

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Devine A, Hodgson JM, Dick IM, Prince RL (2007) Tea drinking is associated with benefits on bone density in older women. Am J Clin Nutr 86:1243–1247

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Wu CH, Yang YC, Yao WJ, Lu FH, Wu JS, Chang CJ (2002) Epidemiological evidence of increased bone mineral density in habitual tea drinkers. Arch Intern Med 162:1001–1006

    PubMed  Article  Google Scholar 

  68. 68.

    Cabrera C, Artacho R, Gimenez R (2006) Beneficial effects of green tea–a review. J Am Coll Nutr 25:79–99

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Chen CH, Ho ML, Chang JK, Hung SH, Wang GJ (2005) Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line. Osteoporos Int 16:2039–2045

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Arjmandi BH, Birnbaum RS, Juma S, Barengolts E, Kukreja SC (2000) The synthetic phytoestrogen, ipriflavone, and estrogen prevent bone loss by different mechanisms. Calcif Tissue Int 66:61–65

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Weaver CM, Cheong JM (2005) Soy isoflavones and bone health: the relationship is still unclear. J Nutr 135:1243–1247

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Maurel DB, Boisseau N, Benhamou CL, Jaffre C (2012) Alcohol and bone: review of dose effects and mechanisms. Osteoporos Int 23:1–16

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Zhang X, Yu Z, Yu M, Qu X (2015) Alcohol consumption and hip fracture risk. Osteoporos Int 26:531–542

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Marrone JA, Maddalozzo GF, Branscum AJ et al (2012) Moderate alcohol intake lowers biochemical markers of bone turnover in postmenopausal women. Menopause 19:974–979

    PubMed  Article  Google Scholar 

  75. 75.

    Mukamal KJ, Robbins JA, Cauley JA, Kern LM, Siscovick DS (2007) Alcohol consumption, bone density, and hip fracture among older adults: the cardiovascular health study. Osteoporos Int 18:593–602

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Cawthon PM, Harrison SL, Barrett-Connor E et al (2006) Alcohol intake and its relationship with bone mineral density, falls, and fracture risk in older men. J Am Geriatr Soc 54:1649–1657

    PubMed  Article  Google Scholar 

  77. 77.

    Sampson HW, Perks N, Champney TH, DeFee B 2nd (1996) Alcohol consumption inhibits bone growth and development in young actively growing rats. Alcohol Clin Exp Res 20:1375–1384

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Sampson HW, Hebert VA, Booe HL, Champney TH (1998) Effect of alcohol consumption on adult and aged bone: composition, morphology, and hormone levels of a rat animal model. Alcohol Clin Exp Res 22:1746–1753

    CAS  PubMed  Google Scholar 

  79. 79.

    Alvisa-Negrin J, Gonzalez-Reimers E, Santolaria-Fernandez F et al (2009) Osteopenia in alcoholics: effect of alcohol abstinence. Alcohol Alcohol 44:468–475

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Nyquist F, Ljunghall S, Berglund M, Obrant K (1996) Biochemical markers of bone metabolism after short and long time ethanol withdrawal in alcoholics. Bone 19:51–54

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Jones G, Scott FS (1999) A cross-sectional study of smoking and bone mineral density in premenopausal parous women: effect of body mass index, breastfeeding, and sports participation. J Bone Miner Res 14:1628–1633

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Lutfy K, Aimiuwu O, Mangubat M et al (2012) Nicotine stimulates secretion of corticosterone via both CRH and AVP receptors. J Neurochem 120:1108–1116

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Rasmussen DD (1998) Effects of chronic nicotine treatment and withdrawal on hypothalamic proopiomelanocortin gene expression and neuroendocrine regulation. Psychoneuroendocrinology 23:245–259

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Kanis JA, Johnell O, Oden A et al (2005) Smoking and fracture risk: a meta-analysis. Osteoporos Int 16:155–162

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Cusano NE (2015) Skeletal Effects of Smoking. Curr Osteoporos Rep 13:302–309

    PubMed  Article  Google Scholar 

  86. 86.

    Wong PK, Christie JJ, Wark JD (2007) The effects of smoking on bone health. Clin Sci (Lond) 113:233–241

    CAS  Article  Google Scholar 

  87. 87.

    Ward KD, Klesges RC (2001) A meta-analysis of the effects of cigarette smoking on bone mineral density. Calcif Tissue Int 68:259–270

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Hermann AP, Brot C, Gram J, Kolthoff N, Mosekilde L (2000) Premenopausal smoking and bone density in 2015 perimenopausal women. J Bone Miner Res 15:780–787

    CAS  PubMed  Article  Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Affiliations

Authors

Contributions

SJM, ER, AvK, and AN designed the study, AM performed the search, SJM, AM, and JF performed the screening, JF and IB did the data extraction, SJM performed the analysis, SJM and IB wrote the manuscript with input, and multiple revisions from all authors. All authors have approved the manuscript and this submission.

Corresponding author

Correspondence to Sharri J. Mortensen.

Ethics declarations

Conflict of interest

Sharri J Mortensen, Indeevar Beeram, Johnathon Florance, Edward K Rodrigues, Amin Mohamadi, Arvind von Keudell, and Ara Nazarian declare that they have no conflict of interest.

Ethical approval

No ethical approval is required, as we have only included secondary analysis of data from previously published studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Search Strategy

Appendix. Search Strategy

figurea

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mortensen, S.J., Beeram, I., Florance, J. et al. Modifiable lifestyle factors associated with fragility hip fracture: a systematic review and meta-analysis. J Bone Miner Metab 39, 893–902 (2021). https://doi.org/10.1007/s00774-021-01230-5

Download citation

Keywords

  • Fracture risk
  • Hip fracture
  • Fragility fracture
  • Modifiable risk factor
  • Lifestyle