Skip to main content

Advertisement

Log in

An examination of histomorphometric relationships in the anterior and posterior human femoral cortex

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Static cortical bone histomorphometry utilised in forensic age-at-death estimation generally examines only the anterior femoral mid-shaft, as biomechanical strain at the posterior femur is thought to result in increased bone remodelling, osteon density and adversely affect age-at-death estimates. As osteon density increases there is a corresponding decrease in geometric variables, such as osteon area and Haversian canal diameter. The present study tests whether the inverse relationship between osteon density and osteon geometry is reflected in a modern documented Australian sample, and if this relationship differs between the anterior and posterior femoral mid-shaft.

Materials and methods

The study sample comprises 215 femoral microradiographs (117♂ 98♀) of recorded age (18‒97 years) from the Melbourne Femur Reference Collection (MFRC). The following variables were measured in Image J across six 1 mm2 regions of interest (ROIs) from the anterior and posterior; mean intact and fragmentary secondary osteon count, osteon population density, osteon and Haversian canal area, perimeter, and diameter.

Results

Osteon area was positively correlated with Haversian canal size and shape metrics, and negatively correlated with osteon density. Chronological age was significantly correlated with most variables. There were significant between-group effects between the youngest (18‒34 years) and all other age groups (35‒49, 50–74 and 75 + years) for both regions.

Conclusion

Our findings support an increased rate of remodelling associated with decreases in osteon geometry in the anterior and posterior femur. Future studies should examine static osteon histomorphometry using anterior and posterior measurements in larger samples of documented age and sex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data (microradiographs) that support the findings of this study are available from the Melbourne Femur Research Collection. Restrictions apply to the availability of these data, which were used under permission for this study. They are not publicly available due to privacy or ethical restrictions, requests for access can be made to: https://dental.unimelb.edu.au/research/melbourne-femur-research-collection#about.

References

  1. Stout SD, Crowder C (2012) Bone remodelling, histomorphology, and histomorphometry. In: Crowder C, Stout SD (eds) Bone histology: an anthropological perspective. CRC Press, Boca Raton, pp 1–22

    Google Scholar 

  2. Recker RR (ed) (1983) Bone histomorphometry: techniques and interpretation. CRC Press, Boca Raton

    Google Scholar 

  3. Ericksen MF (1991) Histologic estimation of age at death using the anterior cortex of the femur. Am J Phys Anthropol 84:171–179. https://doi.org/10.1002/ajpa.1330840207

    Article  CAS  PubMed  Google Scholar 

  4. Wachter NJ, Krischak GD, Mentzel M, Sarkar MR, Ebinger T, Kinzl L, Claes L, Augat P (2002) Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro. Bone 31:90–95. https://doi.org/10.1016/S8756-3282(02)00779-2

    Article  CAS  PubMed  Google Scholar 

  5. Lanyon LE, Goodship AE, Pye C, MacFie J (1982) Mechanically adaptive bone remodelling. J Biomech 15:141–154

    Article  CAS  Google Scholar 

  6. Raab DM, Crenshaw TD, Kimmel DB, Smith EL (1991) A histomorphometric study of cortical bone activity during increased weight-bearing exercise. J Bone Miner Res 6:741–749

    Article  CAS  Google Scholar 

  7. Yamada S, Tadano S, Fujisaki K (2011) Residual stress distribution in rabbit limb bones. J Biomech 44:1285–1290

    Article  Google Scholar 

  8. Miszkiewicz JJ (2016) Investigating histomorphometric relationships at the human femoral midshaft in a biomechanical context. J Bone Miner Metab 34:179–192. https://doi.org/10.1007/s00774-015-0652-8

    Article  PubMed  Google Scholar 

  9. Schaffler MB, Burr DB (1984) Primate cortical bone microstructure: relationship to locomotion. Am J Phys Anthropol 65:191–197. https://doi.org/10.1002/ajpa.1330650211

    Article  CAS  PubMed  Google Scholar 

  10. Robling AG, Stout SD (2003) Histomorphology, geometry, and mechanical loading in past populations. In: Aggrawal A, Stout SD (eds) Bone loss and osteoporosis: an anthropological perspective. Springer, Boston, pp 189–205

    Chapter  Google Scholar 

  11. van Oers RFM, Ruimerman R, van Rietbergen B, Hilbers PAJ, Huiskes R (2008) Relating osteon diameter to strain. Bone 43:476–482. https://doi.org/10.1016/j.bone.2008.05.015

    Article  PubMed  Google Scholar 

  12. Ural A, Vashishth D (2006) Interactions between microstructural and geometrical adaptation in human cortical bone. J Orthop Res 24:1489–1498. https://doi.org/10.1002/jor.20159

    Article  PubMed  Google Scholar 

  13. Buikstra JE, Ubelaker DH (1994) Standards for data collection from human skeletal remains. In: Arkansas archaeological survey research series 44. Arkansas Archaeological Survey, Fayteville, AR

  14. Crowder CM, Andronowski JM, Dominguez VM (2018) Bone histology as an integrated tool in the process of human identification. In: Latham KE, Bartelink EJ, Finnegan M (eds) New perspectives in forensic human skeletal identification. Academic Press, Elsevier, pp 201–213. https://doi.org/10.1016/B978-0-12-805429-1.00018-1

    Chapter  Google Scholar 

  15. Han SH, Kim SH, Ahn YW, Huh GY, Kwak DS, Park DK, Lee UY, Kim YS (2009) Microscopic age estimation from the anterior cortex of the femur in Korean adults. J Forensic Sci 54:519–522

    Article  Google Scholar 

  16. Martrille L, Irinopoulou T, Bruneval P, Baccino E, Fornes P (2009) Age at death estimation in adults by computer-assisted histomorphometry of decalcified femur cortex. J Forensic Sci 54:1231–1237. https://doi.org/10.1111/j.1556-4029.2009.01178.x

    Article  PubMed  Google Scholar 

  17. Dominguez VM, Mavroudas S (2019) Bone histology for skeletal age-at-death estimation. In: Adserias-Garriga J (ed) Age estimation. Academic Press, Elsevier, pp 145–159. https://doi.org/10.1016/B978-0-12-814491-6.00010-8

    Chapter  Google Scholar 

  18. Chan AHW, Crowder CM, Rogers TL (2007) Variation in cortical bone histology within the human femur and its impact on estimating age at death. Am J Phys Anthropol 132:80–88. https://doi.org/10.1002/ajpa.20465

    Article  PubMed  Google Scholar 

  19. Thompson D (1979) The core technique in the determination of age at death in skeletons. J Forensic Sci 24:902–915

    Article  CAS  Google Scholar 

  20. Clement JG, Thomas CDL (2012) The melbourne femur collection: how a forensic anthropological collection came to have broader applications. In: Crowder C, Stout SD (eds) Bone histology : an anthropological perspective. CRC Press, Boca Raton, pp 327–339

    Google Scholar 

  21. Thomas C, Stein M, Feik S, Wark J, Clement J (2000) Determination of age at death using combined morphology and histology of the femur. J Anatomy 196:463–471

    Article  Google Scholar 

  22. Stein MS, Feik SA, Thomas CDL, Clement JG, Wark JD (1999) An automated analysis of intracortical porosity in human femoral bone across age. J Bone Miner Res 14:624–632. https://doi.org/10.1359/jbmr.1999.14.4.624

    Article  CAS  PubMed  Google Scholar 

  23. Britz HM, Thomas CDL, Clement JG, Cooper DML (2009) The relation of femoral osteon geometry to age, sex, height and weight. Bone 45:77–83. https://doi.org/10.1016/j.bone.2009.03.654

    Article  PubMed  Google Scholar 

  24. Bertelsen PK, Clement JG, Thomas CDL (1995) A morphometric study of the cortex of the human femur from early childhood to advanced old age. Forensic Sci Int 74:63–77. https://doi.org/10.1016/0379-0738(95)01738-5

    Article  CAS  PubMed  Google Scholar 

  25. Preibisch S, Saalfeld S, Tomancak P (2009) Globally optimal stitching of tiled 3D microscopic image acquisitions (in eng). Bioinformatics (Oxford, England) 25:1463–1465. https://doi.org/10.1093/bioinformatics/btp184

    Article  CAS  Google Scholar 

  26. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B (2012) Fiji: an open-source platform for biological-image analysis. Nat Meth 9:676–682

    Article  CAS  Google Scholar 

  27. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Meth 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  Google Scholar 

  28. Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) Image J2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18:529

    Article  Google Scholar 

  29. Gocha TP, Agnew AM (2016) Spatial variation in osteon population density at the human femoral midshaft: histomorphometric adaptations to habitual load environment. J Anat 228:733–745. https://doi.org/10.1111/joa.12433

    Article  PubMed  Google Scholar 

  30. Crowder C, Stout SD (2012) Bone histology : an anthropological perspective. CRC Press, Boca Raton

    Google Scholar 

  31. Maggio A, Franklin D (2019) Histomorphometric age estimation from the femoral cortex: a test of three methods in an Australian population. Forensic Sci Int 303:109950. https://doi.org/10.1016/j.forsciint.2019.109950

    Article  PubMed  Google Scholar 

  32. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163. https://doi.org/10.1016/j.jcm.2016.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale, NJ

    Google Scholar 

  34. Skedros JG, Knight AN, Clark GC, Crowder CM, Dominguez VM, Qiu S, Mulhern DM, Donahue SW, Busse B, Hulsey BI, Zedda M, Sorenson SM (2013) Scaling of Haversian canal surface area to secondary osteon bone volume in ribs and limb bones. Am J Phys Anthropol 151:230–244. https://doi.org/10.1002/ajpa.22270

    Article  PubMed  Google Scholar 

  35. Seeman E (2002) Pathogenesis of bone fragility in women and men. Lancet 359:1841–1850. https://doi.org/10.1016/S0140-6736(02)08706-8

    Article  PubMed  Google Scholar 

  36. Thomas CDL, Feik SA, Clement JG (2005) Regional variation of intracortical porosity in the midshaft of the human femur: age and sex differences. J Anat 206:115–125. https://doi.org/10.1111/j.1469-7580.2005.00384.x

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cosgriff-Hernandez M-T (2012) Histomorphometric estimation of age at death using the femoral cortex: a modification of established methods. The Ohio State University, Columbus

  38. Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8:455–498. https://doi.org/10.1146/annurev.bioeng.8.061505.095721

    Article  CAS  PubMed  Google Scholar 

  39. Squires K, Booth T, Roberts CA (2019) The Ethics of sampling human skeletal remains for destructive analyses. In: Squires K, Errickson D, Márquez-Grant N (eds) Ethical approaches to human remains: a global challenge in bioarchaeology and forensic anthropology. Springer International Publishing, Cham, pp 265–297. https://doi.org/10.1007/978-3-030-32926-6_12

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Rita Hardiman (Melbourne Dental School, The University of Melbourne) for facilitating access to the Melbourne Femur Reference Collection as well as everyone involved in the donation and preparation of the microradiographs used in this study. The authors would also like to thank the anonymous reviewers for their comments. This research was supported by an Australian Government Research Training Program (RTP) Scholarship.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

AM: conceptualization (lead); data curation (lead); formal analysis (lead); methodology (lead); validation (lead); visualization (lead); writing-original draft (lead); writing-review and editing (equal). df: conceptualization (supporting); methodology (supporting); supervision (lead); writing-original draft (supporting); writing-review and editing (equal).

Corresponding author

Correspondence to Ariane Maggio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

774_2021_1204_MOESM1_ESM.png

Supplementary file1 Supplementary Fig.1: Scattergrams illustrating the distribution of data from anterior measurements in age group categories. Each scattergram shows five regression lines; one per age group and one representing the entire dataset (thicker black line) (PNG 136 KB)

774_2021_1204_MOESM2_ESM.png

Supplementary file2 Supplementary Fig. 2: Scattergrams illustrating the distribution of data from posterior measurements in age group categories. Each scattergram shows five regression lines; one per age group and one representing the entire dataset (thicker black line) (PNG 136 KB)

Supplementary file3 (DOCX 51 KB) Supplementary Tables 1–4

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maggio, A., Franklin, D. An examination of histomorphometric relationships in the anterior and posterior human femoral cortex. J Bone Miner Metab 39, 649–660 (2021). https://doi.org/10.1007/s00774-021-01204-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-021-01204-7

Keywords

Navigation