Skip to main content

Advertisement

Log in

Incidence rate of vitamin D deficiency and FGF23 levels in 12- to 13-year-old adolescents in Japan

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

The incidence rate of vitamin D deficiency is increasing throughout the world. We measured the incidence rate of vitamin D deficiency and fibroblast growth factor 23 (FGF23) levels in 12- to 13-year-old adolescents in Japan.

Materials and methods

A total of 492 adolescents (247 boys and 245 girls) from Japanese community enrolled in this study. 25 hydroxyvitamin D (25(OH)D) was measured with radioimmunoassay. In the subjects with low 25(OH)D levels (≦ 20 ng/ml), intact parathyroid hormone (iPTH), calcium (Ca), phosphorus (P), albumin (Alb), alkaline phosphatase (ALP) and FGF23 were measured.

Results

25(OH)D levels were significantly lower in girls (20.9 ± 3.1 ng/ml) than in boys (22.2 ± 3.3 ng/ml) (p < 0.0001). Fifty-five boys (22.3%) and 83 (33.9%) girls showed vitamin D deficiency (< 20 ng/ml). One-hundred eighty-six (75.3%) boys and 162 (66.1%) girls showed vitamin D insufficiency (≧ 20 ng/ml, < 30 ng/ml). In the subjects whose 25(OH)D levels were ≦ 20 ng/ml, the levels of iPTH, Ca, P, Alb, ALP and FGF23 were 22.3 ± 9.0 pg/ml, 9.5 ± 0.4 mg/dl, 4.7 ± 0.6 mg/dl, 4.6 ± 0.3 g/dl, 920.8 ± 339.3 U/l and 42.6 ± 26.0 pg/ml, respectively. There was a significant negative association between serum 25(OH)D levels and iPTH [r =  − 0.290 (p < 0.0001)]. There was no significant association between serum 25(OH)D levels and FGF23.

Conclusion

We show that 28% of Japanese 12- to 13-year-old early adolescents suffer from vitamin D deficiency. Findings from this study indicate that vitamin D deficiency requires close oversight in public health during adolescence to ensure proper bone health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Christakos S, Li S, Cruz J, Bikle DD (2019) New developments in our understanding of vitamin D metabolism, action and treatment. Metabolism 98:112–120

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wagner CL, Greer FR, American Academy of Pediatrics Section on Breastfeeding; American Academy of Pediatrics Committee on Nutrition (2008) Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics 122:1142–1152

    PubMed  Google Scholar 

  3. Gudmundsdottir SL, Hrafnkelsson H, Sigurdsson EL, Johannsson E (2020) Serum 25-hydroxyvitamin D concentrations in 16-year-old Icelandic adolescent and its association with bone mineral density. Public Health Nutr 23:1329–1333

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Prince RL (2006) Secondary and tertiary hyperparathyroidism. In: Favus MJ (ed) Primer on the metabolic diseases and disorders of mineral metabolism. American Society for Bone and Mineral Research, Washington, DC, pp 190–195

    Google Scholar 

  5. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795

    Google Scholar 

  6. Itoh M, Tomio J, Toyokawa S, Tamura M, Isojima T, Kitanaka S, Kobayashi Y (2017) Vitamin D-deficient rickets in Japan. Glob Pediatr Health 4:1–5

    Google Scholar 

  7. Basatemur E, Horsfall L, Marston L, Rait G, Sutcliffe A (2017) Trends in the diagnosis of vitamin D deficiency. Pediatrics 139:e20162748

    PubMed  PubMed Central  Google Scholar 

  8. Nakano S, Suzuki M, Minowa K, Hirai S, Takubo N, Sakamoto Y, Ishijima M, Hoshino E, Tokita A, Shimizu T (2018) Current vitamin D status in healthy Japanese infants and young children. J Nutr Sci Vitaminol 64:99–105

    CAS  PubMed  Google Scholar 

  9. Ayabe T, Yamamoto-Hanada K, Mezawa H, Konishi M, Ishitsuka K et al (2018) Regional differences in infant 25-Hydroxyvitamin D: pilot study of the Japan environment and children’s study. Pediatr Int 60:30–34

    CAS  PubMed  Google Scholar 

  10. Asakura K, Etoh N, Imamura H, Michikawa T, Nakamura T, Takeda Y, Mori S, Nishiwaki Y (2020) Serum 25-hydroxyvitamin D with simultaneously measured dietary vitamin D intake and ultraviolet ray exposure. Nutrients 12:743

    CAS  PubMed Central  Google Scholar 

  11. Yoshimura N, Muraki S, Oka H, Morita M, Yamada H, Tanaka S, Kawaguchi H, Nakamura K, Akune T (2013) Profiles of vitamin D insufficiency and deficiency in Japanese men and women: association with biological, environmental, and nutritional factors and coexisting disorders; the ROAD study. Osteoporos Int 24:2775–2787

    CAS  PubMed  Google Scholar 

  12. Ohta H, Kuroda T, Onoe Y, Orito S, Ohara M, Kume M, Harada A, Tsugawa N, Okano T, Sasaki S (2009) The impact of lifestyle factors on serum 25-hydroxyvitamin D levels: a cross-sectional study in Japanese women aged 19–25 years. J Bone Miner Metab 27:682–688

    CAS  PubMed  Google Scholar 

  13. Ono Y, Suzuki A, Kotake M, Zhang X, Nishiwaki-Yasuda K, Ishiwata Y, Imamura S, Nagata M, Takamoto S, Itoh M (2005) Seasonal changes of serum 25-hydroxyvitamin D and intact parathyroid hormone levels in a normal Japanese population. J Bone Miner Metab 23:147–151

    CAS  PubMed  Google Scholar 

  14. Tsugawa N, Uenishi K, Ishida H, Ozaki R, Takase T, Minekami T, Uchino Y, Kamao M, Okano T (2016) Association between vitamin D status and serum parathyroid hormone concentration and calcaneal stiffness in Japanese adolescents: sex differences in susceptibility to vitamin D deficiency. J Bone Miner Metab 34:464–474

    CAS  PubMed  Google Scholar 

  15. Kubota T, Kitaoka T, Miura K, Fujiwara M, Ohata Y, Miyoshi Y, Yamamoto K, Takeyari S, Yamamoto T, Namba N, Ozono K (2014) Serum fibroblast growth factor 23 is a useful marker to distinguish vitamin D-deficient rickets from hypophosphatemic rickets. Horm Res Paediatr 81:251–257

    CAS  PubMed  Google Scholar 

  16. Uzum AK, Salman S, Telci A, Boztepe H, Tanakol R, Alagol F (2010) Effects of vitamin D replacement therapy on serum FGF23 concentrations in vitamin D-deficient women in short term. Eur J Endocrinol 163:825–831

    CAS  PubMed  Google Scholar 

  17. Okazaki R, Ozono K, Fukumoto S, Inoue D, Yamauchi M, Minagawa M, Michigami T, Takeuchi Y, Matsumoto T, Sugimoto T (2017) Assessment criteria for vitamin D deficiency/insufficiency in Japan: Proposal by an expert panel supported by the research program of intractable diseases, ministry of health, labour and welfare, Japan, the Japanese society for bone and mineral research and the Japan Endocrine society [Opinion]. J Bone Miner Metab 35:1–5

    CAS  PubMed  Google Scholar 

  18. Wang S, Shen G, Jiang S, Xu H, Li M, Wang Z, Zhang S, Yu Y (2017) Nutrient status of vitamin D among Chinese children. Nutrients 9:319

    CAS  PubMed Central  Google Scholar 

  19. Valtuena J, Gonzalez-Gross M, Huybrechts I, Breidenassel C, Ferrari M, Mouratidou T, Gottrand F, Dallongeville J, Azzini E, Sioen I, Gomez-Martinez S, Cuenca-Garcia M, Kersting M, Stehle P, Kafatos A, Manios Y, Widhalm K, Moreno LA (2013) Factors associated with vitamin D deficiency in European adolescents : the HELENA study. J Nutr Sci Vitaminol 59:161–171

    CAS  PubMed  Google Scholar 

  20. Vierucci F, Pistoia MD, Fanos M, Erba P, Saggese G (2014) Prevalence of hypovitaminosis D and predictors of vitamin D status in Italian healthy adolescents. Ital J Pediatr 40:54

    PubMed  PubMed Central  Google Scholar 

  21. Sahin ON, Serdar M, Serteser M, Unsal I, Ozpinar A (2018) Vitamin D levels and parathyroid hormone variations of children living in a subtropical climate: a data mining study. Ital J Pediatr 44:40

    PubMed  PubMed Central  Google Scholar 

  22. Kim SH, Oh MK, Namgung R, Park MJ (2014) prevalence of 25-hydroxyvitamin D deficiency in Korean adolescents: association with age, season and parental vitamin D status. Public Health Nutr 17:122–130

    PubMed  Google Scholar 

  23. Zhu Z, Zhan J, Shao J, Chen W, Chan L, Li W, Ji C, Zhao Z (2012) High prevalence of vitamin D deficiency among children aged 1 month to 16 years in Hangzhou. China BMC Public Health 12:126

    PubMed  Google Scholar 

  24. Vierucci F, Pistoia MD, Fanos M, Gori M, Carlone G, Erba P, Massimetti G, Federico G, Saggese G (2013) Vitamin D status and predictors of hypovitaminosis D in Italian children and adolescents: a cross-sectional study. Eur J Pediatr 172:1607–1617

    CAS  PubMed  Google Scholar 

  25. Smyczynska J, Smyczynska U, Stawerska R, Domagalska-Nalewajek H, Lewinski A, Hilczer M (2019) Seasonality of vitamin D concentrations and the incidence of vitamin D deficiency in children and adolescents from central Poland. Pediatr Endocrinol Diabetes Metab 25:54–59

    PubMed  Google Scholar 

  26. Kumar J, Muntner P, Kaskel FJ, Hailpern SM, Melamed ML (2009) Prevalence and associations of 25-hydroxyvitamin D deficiency in US children: NHANES 2001–2004. Pediatrics 124:e362–e370

    PubMed  PubMed Central  Google Scholar 

  27. Isa H, Almaliki M, Alsabea A, Mohamed A (2020) Vitamin D deficiency in healthy children in Bahrain: do gender and age matter? East Mediterr Health J 26:260–267

    PubMed  Google Scholar 

  28. Szabó B, Tabák ÁG, Toldy E, Szekeres L, Szili B, Bakos B, Balla B, Kósa JP, Lakatos P, Takács I (2017) The role of serum total and free 25-hydroxyvitamin D and PTH values in defining vitamin D status at the end of winter: a representative survey. J Bone Miner Metab 35:83–90

    PubMed  Google Scholar 

  29. Yano M, Tanino N, Hasegawa H, Yokoro M, Fukuo K (2018) Relationship between serum vitamin D levels and clinical parameters in community dwelling elderly women (in Japanese). New Diet Therapy 34:3–12

    Google Scholar 

  30. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96:1911–1930

    CAS  PubMed  Google Scholar 

  31. Flores M, Macias N, Lozada A, Sanchez LM, Diaz E, Barquera S (2013) Serum 25-hydroxyvitamin D levels among Mexican children aged 2y to 12y: a national survey. Nutrition 29:802–804

    CAS  PubMed  Google Scholar 

  32. Roh YE, Kim BR, Choi WB, Kim YM, Cho MJ, Kim HY, Park KH, Kim KH, Chun P, Kim SY, Kwak MJ (2016) Vitamin D deficiency in children aged 6 to 12 years: single center’s experience in Busan. Ann Pediatr Endocrinol Metab 21:149–154

    PubMed  PubMed Central  Google Scholar 

  33. Saki F, Dabbaghmanesh MH, Omrani GR, Bakhshayeshkaram M (2017) Vitamin D deficiency and its associated risk factors in children and adolescents in southern Iran. Public Health Nutr 20:1851–1856

    PubMed  Google Scholar 

  34. Bener A, Al-Ali M, Hoffmann GF (2009) High prevalence of vitamin D deficiency in young children in a highly sunny humid country: a global health problem. Minerva Pediatr 61:15–22

    CAS  PubMed  Google Scholar 

  35. Andiran N, Celik N, Akca H, Dogan G (2012) Vitamin D deficiency in children and adolescents. J Clin Res Pediatr Endocrinol 4:25–29

    PubMed  PubMed Central  Google Scholar 

  36. Shaikh AM, Abaalkhail B, Soliman A, Kaddam I, Aseri K, Saleh YA, Qarni AA, Shuaibi AA, Tamimi WA, Mukhtar AM (2016) Prevalence of vitamin D deficiency and calcium homeostatis in Saudi children. J Clin Pediatr Endocrinol 8:461–467

    Google Scholar 

  37. Katrinaki M, Kampa M, Margioris A, Castanas E, Malliaraki N (2016) Vitamin D levels in a large Mediterranean cohort: reconsidering normal cut-off values. Hormones 15:205–223

    PubMed  Google Scholar 

  38. Al-Ghannami SS, Sedlak E, Hussein IS, Min Y, Al-Shmmkhi SM, Al-Oufi HS, Al-Mazroui A, Ghebremeskel K (2016) Lipid-soluble nutrient status of healthy Omani school children before and after intervention with oily fish meal or re-esterified triacylglycerol fish oil. Nutrition 32:73–78

    CAS  PubMed  Google Scholar 

  39. Petersen RA, Damsgaard CT, Dalskov SM, Sorensen LB, Hjorth MF, Ritz C, Kjolbek L, Andersen R, Tetens I, Krarup H, Astrup A, Michaelsen KF, Molgaard C (2016) Vitamin D status and its determinants during autumn in children at northern latitudes: a cross-sectional analysis from the optimal well-being, development and health for Danish children through a healthy New Nordic Diet (OPUS) School Meal Study. Br J Nutr 115:239–250

    CAS  PubMed  Google Scholar 

  40. Alyahya KO (2017) Vitamin D levels in schoolchildren: a cross-sectional study in Kuwait. BMC Pediatrics 17:213

    PubMed  PubMed Central  Google Scholar 

  41. Kaddam IM, Al-Shaikh AM, Abaalkhail BA, Asseri KS, Al-Saleh YM, Al-Qarni AA, Al-Shuaibi AM, Tamimi WG, Mukhtar AM (2017) Prevalence of vitamin D deficiency and its associated factors in three regions of Saudi Arabia. Saudi Med J 38:381–390

    PubMed  PubMed Central  Google Scholar 

  42. Moore C, Murphy MM, Keast DR, Holick MF (2004) Vitamin D intake in the United States. J Am Diet Assoc 104:980–983

    CAS  PubMed  Google Scholar 

  43. Liang GY, Qin R, Li J, Liang GX, Guan YJ, Gao ZH (2011) Optimal level of 25-(OH)D in children in Nanjing (32°N Lat) during winter. Pediatr Int 53:541–545

    CAS  PubMed  Google Scholar 

  44. Suzuki A, Kotake M, Ono Y, Kato T, Oda N, Hayakawa N, Hashimoto S, Itoh M (2006) Hypovitaminosis D in type 2 diabetes mellitus: association with microvascular complications and type of treatment. Endocr J 53:503–510

    CAS  PubMed  Google Scholar 

  45. Solarin AU, Nourse P, Gajjar P (2019) Vitamin D status of children with moderate to severe chronic kidney disease at a tertiary pediatric center in Cape Town. Saudi J Kidney Dis Transpl 30:781–794

    PubMed  Google Scholar 

  46. Trummer C, Schwetz V, Pandis M, Grubler MR, Verheyen N, Gaksch M, ZittermaA MW, Aberer F, Steinkellner J, Friedl C, Brandenburg V, Voelkl J, Alesutan I, Obermayer-Pietsch B, Pieber TR, Tomaschitz A, Pilz S (2019) Effects of vitamin D supplementation on FGF23: a randomized-controlled trial. Eur J Nutr 58:697–703

    CAS  PubMed  Google Scholar 

  47. Charoenngam N, Rujirachun P, Holick MF, Ungprasert P (2019) Oral vitamin D3 supplementation increase serum fibroblast growth factor 23 concentration in vitamin D-deficient patients: a systematic review and metaanalysis. Osteoporos Int 30:2183–2193

    CAS  PubMed  Google Scholar 

  48. Endo I, Fukumoto S, Ozono K, Namba N, Tanaka H, Inoue D, Minagawa M, Sugimoto T, Yamauchi M, Michigami T, Matsumoto T (2008) Clinical usefulness of measurement of fibroblast growth factor 23 (FGF23) in hypophosphatemic patients proposal of diagnostic criteria using FGF23 measurement. Bone 42:1235–1239

    CAS  PubMed  Google Scholar 

  49. Yuen SN, Kramer H, Luke A, Bovet P, Plange-Rhule J, Forrester T, Lambart V, Wolf M, Camacho P, Harders R, Dugas L, Cooper R, Durazo-Arvizu R (2016) Fibroblast growth factor-23 (FGF-23) levels differ across populations by degree of industrialization. J Clin Endocrinol Metab 101:2246–2253

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-Aid from the Ministry of Health, Labour, and Welfare of Japan (H28-sukoyaka-ippan-006). The authors thank Mrs. Yasuyo Kawai for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

SK conceptualized and designed the study, collected the data, carried out the analysis, drafted the initial manuscript, and reviewed and revised the manuscript. TK, KO and OA conceptualized the study and reviewed and revised the manuscript. JN carried out the analysis, and reviewed and revised the manuscript. SY critically reviewed the manuscript for important intellectual content. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Satomi Koyama.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest relevant to this article to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koyama, S., Kubota, T., Naganuma, J. et al. Incidence rate of vitamin D deficiency and FGF23 levels in 12- to 13-year-old adolescents in Japan. J Bone Miner Metab 39, 456–462 (2021). https://doi.org/10.1007/s00774-020-01173-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-020-01173-3

Keywords

Navigation