Skip to main content

Advertisement

Log in

CircRNA TGFBR2/MiR-25-3p/TWIST1 axis regulates osteoblast differentiation of human aortic valve interstitial cells

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Calcified aortic valve disease (CAVD) is characterized by valve thickening and calcification. Osteoblast differentiation is one of the key steps of valve calcification. CircRNAs is involved in osteogenic differentiation of multiple mesenchymal cells. However, the function of circRNA TGFBR2 (TGFBR2) in CAVD remained unclear. We explored the effect and mechanism of TGFBR2 in modulating CAVD.

Materials and Methods

Human aortic valve interstitial cells (VICs) were subjected to osteogenic induction, and transfected with TGFBR2, miR-25-3p mimic and siTWIST1. The relationship between miR-25-3p and GFBR2 was predicted by starBase and confirmed by luciferase reporter and Person’s correlation test. The relationship between miR-25-3p and TWIST1 was predicted by TargetScan and confirmed by luciferase reporter assay. The expressions of TGFBR2, miR-25-3p, TWIST1, osteoblast markers (RUNX2 and OPN) were detected by Western blot or/and qRT-PCR. Alkaline phosphatase (ALP) activity and calcium nodule was determined by colorimetric method and Alizarin Red S staining.

Results

The expression of TGFBR2 was down-regulated and that of miR-25-3p was up-regulated in calcific valves and osteogenic VICs. TGFBR2 was inversely correlated with miR-25-3p expression in calcific valves. TGFBR2 sponged miR-25-3p to regulate TWIST1 expression in osteogenic VICs. During osteogenic differentiation, ALP activity, calcium nodule, the levels of osteoblast markers were increased in VICs. MiR-25-3p overexpression or TWIST1 knockdown reversed the inhibitory effect of TGFBR2 overexpression on ALP activity, calcium nodule, the expressions of RUNX2 and OPN in osteogenic VICs.

Conclusion

The findings indicated that TGFBR2/miR-25-3p/TWIST1 axis regulates osteoblast differentiation in VICs, supporting the fact that TGFBR2 is a miRNA sponge in CAVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dutta P, Lincoln J (2018) Calcific aortic valve disease: a developmental biology perspective. Curr Cardiol Rep 20(4):21. https://doi.org/10.1007/s11886-018-0968-9

    Article  PubMed  PubMed Central  Google Scholar 

  2. Otto CM, Prendergast B (2014) Aortic-valve stenosis—from patients at risk to severe valve obstruction. N Engl J Med 371:744–756. https://doi.org/10.1056/NEJMra1313875

    Article  CAS  PubMed  Google Scholar 

  3. Yutzey KE, Demer LL, Body SC, Huggins GS, Towler DA, Giachelli CM, Hofmann-Bowman MA, Mortlock DP, Rogers MB, Sadeghi MM, Aikawa E (2014) Calcific aortic valve disease: a consensus summary from the Alliance of Investigators on Calcific Aortic Valve Disease. Arterioscler Thromb Vasc Biol 34:2387–2393. https://doi.org/10.1161/atvbaha.114.302523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Song R, Zhai Y, Ao L, Fullerton DA, Meng X (2019) MicroRNA-204 deficiency in human aortic valves elevates valvular osteogenic activity. Int J Mol Sci. https://doi.org/10.3390/ijms21010076

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fischer JW, Leung AK (2017) CircRNAs: a regulator of cellular stress. Crit Rev Biochem Mol Biol 52:220–233. https://doi.org/10.1080/10409238.2016.1276882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barrett SP, Salzman J (2016) Circular RNAs: analysis, expression and potential functions. Development (Cambridge, England) 143:1838–1847. https://doi.org/10.1242/dev.128074

    Article  CAS  Google Scholar 

  7. Lv T, Wu Y, Mu C, Liu G, Yan M, Xu X, Wu H, Du J, Yu J, Mu J (2016) Insulin-like growth factor 1 promotes the proliferation and committed differentiation of human dental pulp stem cells through MAPK pathways. Arch Oral Biol 72:116–123. https://doi.org/10.1016/j.archoralbio.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  8. Tarfiei GA, Shadboorestan A, Montazeri H, Rahmanian N, Tavosi G, Ghahremani MH (2019) GDF15 induced apoptosis and cytotoxicity in A549 cells depends on TGFBR2 expression. Cell Biochem Funct 37:320–330. https://doi.org/10.1002/cbf.3391

    Article  CAS  PubMed  Google Scholar 

  9. Sakai E, Nakayama M, Oshima H, Kouyama Y, Niida A, Fujii S, Ochiai A, Nakayama KI, Mimori K, Suzuki Y, Hong CP, Ock CY, Kim SJ, Oshima M (2018) Combined mutation of Apc, Kras, and Tgfbr2 effectively drives metastasis of intestinal cancer. Can Res 78:1334–1346. https://doi.org/10.1158/0008-5472.can-17-3303

    Article  CAS  Google Scholar 

  10. Peters SB, Wang Y, Serra R (2017) Tgfbr2 is required in osterix expressing cells for postnatal skeletal development. Bone 97:54–64. https://doi.org/10.1016/j.bone.2016.12.017

    Article  CAS  PubMed  Google Scholar 

  11. Ma F, Li Z, Cao J, Kong X, Gong G (2019) A TGFBR2/SMAD2/DNMT1/miR-145 negative regulatory loop is responsible for LPS-induced sepsis. Biomed Pharmacother 112:108626. https://doi.org/10.1016/j.biopha.2019.108626

    Article  CAS  PubMed  Google Scholar 

  12. Li W, Li Q, Jiao Y, Qin L, Ali R, Zhou J, Ferruzzi J, Kim RW, Geirsson A, Dietz HC, Offermanns S, Humphrey JD, Tellides G (2014) Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis. J Clin Investig 124:755–767. https://doi.org/10.1172/jci69942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gao Q, Yuan S, Yuan D (2018) Evidence of correlation between TGFBR2 gene expression mediated by NF-kappab signaling pathways and Kawasaki disease in children. Minerva Pediatr 70:438–443. https://doi.org/10.23736/s0026-4946.17.04921-0

    Article  PubMed  Google Scholar 

  14. Du Y, Li J, Hou Y, Chen C, Long W, Jiang H (2019) Alteration of circular RNA expression in rat dental follicle cells during osteogenic differentiation. J Cell Biochem 120:13289–13301. https://doi.org/10.1002/jcb.28603

    Article  CAS  PubMed  Google Scholar 

  15. Sun K, Lai EC (2013) Adult-specific functions of animal microRNAs. Nat Rev Genet 14:535–548. https://doi.org/10.1038/nrg3471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang F, Chen K, Tao H, Kang T, Xiong Q, Zeng Q, Liu Y, Jiang S, Chen M (2018) miR-25–3p, positively regulated by transcription factor AP-2alpha, regulates the metabolism of C2C12 cells by targeting Akt1. Int J Mol Sci. https://doi.org/10.3390/ijms19030773

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zeng Z, Li Y, Pan Y, Lan X, Song F, Sun J, Zhou K, Liu X, Ren X, Wang F, Hu J, Zhu X, Yang W, Liao W, Li G, Ding Y, Liang L (2018) Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun 9:5395. https://doi.org/10.1038/s41467-018-07810-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jin Y, Yu D, Tolleson WH, Knox B, Wang Y, Chen S, Ren Z, Deng H, Guo Y, Ning B (2016) MicroRNA hsa-miR-25-3p suppresses the expression and drug induction of CYP2B6 in human hepatocytes. Biochem Pharmacol 113:88–96. https://doi.org/10.1016/j.bcp.2016.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu D, Luo H (2019) miR-25–3p down-regulates the expression of ADAM10 to inhibit the differentiation of P19 cells into cardiomyocytes by blocking the Notch signaling pathway. Chin J Cell Mol Immunol (Xi bao yu fen zi mian yi xue za zhi) 35:405–411

    Google Scholar 

  20. Chen H, Pan H, Qian Y, Zhou W, Liu X (2018) MiR-25-3p promotes the proliferation of triple negative breast cancer by targeting BTG2. Mol Cancer 17:4. https://doi.org/10.1186/s12943-017-0754-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bulent Vatan M, Kalayci Yigin A, Akdemir R, Tarik Agac M, Akif Cakar M, Aksoy M, Tatli E, Kilic H, Gunduz H, Guzel D, Karacan K (2016) Altered plasma MicroRNA expression in patients with mitral chordae tendineae rupture. J Heart Valve Dis 25:580–588

    PubMed  Google Scholar 

  22. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388. https://doi.org/10.1038/nature11993

    Article  CAS  PubMed  Google Scholar 

  23. Sainger R, Grau JB, Branchetti E, Poggio P, Seefried WF, Field BC, Acker MA, Gorman RC, Gorman JH 3rd, Hargrove CW 3rd, Bavaria JE, Ferrari G (2012) Human myxomatous mitral valve prolapse: role of bone morphogenetic protein 4 in valvular interstitial cell activation. J Cell Physiol 227:2595–2604. https://doi.org/10.1002/jcp.22999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiao X, Zhou T, Guo S, Guo C, Zhang Q, Dong N, Wang Y (2017) LncRNA MALAT1 sponges miR-204 to promote osteoblast differentiation of human aortic valve interstitial cells through up-regulating Smad4. Int J Cardiol 243:404–412. https://doi.org/10.1016/j.ijcard.2017.05.037

    Article  PubMed  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods (San Diego, Calif) 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  26. Ma S, Liu G, Jin L, Pang X, Wang Y, Wang Z, Yu Y, Yu J (2016) IGF-1/IGF-1R/hsa-let-7c axis regulates the committed differentiation of stem cells from apical papilla. Sci Rep 6:36922. https://doi.org/10.1038/srep36922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Lu Y, Li Z, Zhou Y, Gu Y, Pang X, Wu J, Gobin R, Yu J (2018) Oestrogen receptor alpha regulates the odonto/osteogenic differentiation of stem cells from apical papilla via ERK and JNK MAPK pathways. Cell Prolif 51:e12485. https://doi.org/10.1111/cpr.12485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu GX, Ma S, Li Y, Yu Y, Zhou YX, Lu YD, Jin L, Wang ZL, Yu JH (2018) Hsa-let-7c controls the committed differentiation of IGF-1-treated mesenchymal stem cells derived from dental pulps by targeting IGF-1R via the MAPK pathways. Exp Mol Med 50:25. https://doi.org/10.1038/s12276-018-0048-7

    Article  CAS  PubMed Central  Google Scholar 

  29. Qian DY, Yan GB, Bai B, Chen Y, Zhang SJ, Yao YC, Xia H (2017) Differential circRNA expression profiles during the BMP2-induced osteogenic differentiation of MC3T3-E1 cells. Biomed Pharmacother 90:492–499. https://doi.org/10.1016/j.biopha.2017.03.051

    Article  CAS  PubMed  Google Scholar 

  30. Long T, Guo Z, Han L, Yuan X, Liu L, Jing W, Tian W, Zheng XH, Tang W, Long J (2018) Differential expression profiles of circular RNAs during osteogenic differentiation of mouse adipose-derived stromal cells. Calcif Tissue Int 103:338–352. https://doi.org/10.1007/s00223-018-0426-0

    Article  CAS  PubMed  Google Scholar 

  31. Li Z, Li N, Ge X, Pan Y, Lu J, Gobin R, Yan M, Yu J (2019) Differential circular RNA expression profiling during osteogenic differentiation of stem cells from apical papilla. Epigenomics 11:1057–1073. https://doi.org/10.2217/epi-2018-0184

    Article  CAS  PubMed  Google Scholar 

  32. Kang Y, Guo S, Sun Q, Zhang T, Liu J, He D (2020) Differential circular RNA expression profiling during osteogenic differentiation in human adipose-derived stem cells. Epigenomics 12:289–302. https://doi.org/10.2217/epi-2019-0218

    Article  CAS  PubMed  Google Scholar 

  33. Zhang M, Jia L, Zheng Y (2019) circRNA expression profiles in human bone marrow stem cells undergoing osteoblast differentiation. Stem Cell Rev Rep 15:126–138. https://doi.org/10.1007/s12015-018-9841-x

    Article  CAS  PubMed  Google Scholar 

  34. Song R, Fullerton DA, Ao L, Zhao KS, Reece TB, Cleveland JC Jr, Meng X (2017) Altered MicroRNA expression is responsible for the pro-osteogenic phenotype of interstitial cells in calcified human aortic valves. J Am Heart Assoc. https://doi.org/10.1161/jaha.116.005364

    Article  PubMed  PubMed Central  Google Scholar 

  35. Xu R, Zhao M, Yang Y, Huang Z, Shi C, Hou X, Zhao Y, Chen B, Xiao Z, Liu J, Miao Q, Dai J (2017) MicroRNA-449c-5p inhibits osteogenic differentiation of human VICs through Smad4-mediated pathway. Sci Rep 7:8740. https://doi.org/10.1038/s41598-017-09390-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu P, Yin B, Liu L (2019) MicroRNA-138 suppresses osteoblastic differentiation of valvular interstitial cells in degenerative calcific aortic valve disease. J Cell Mol Med 60:136–144. https://doi.org/10.1536/ihj.18-086

    Article  CAS  Google Scholar 

  37. Jiao W, Zhang D, Wang D, Xu R, Tang L, Zhao M, Xu R (2019) MicroRNA-638 inhibits human aortic valve interstitial cell calcification by targeting Sp7. J Cell Mol Med 23:5292–5302. https://doi.org/10.1111/jcmm.14405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fang M, Wang CG, Zheng C, Luo J, Hou S, Liu K, Li X (2018) Mir-29b promotes human aortic valve interstitial cell calcification via inhibiting TGF-beta3 through activation of wnt3/beta-catenin/Smad3 signaling. J Cell Biochem 119:5175–5185. https://doi.org/10.1002/jcb.26545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li XF, Wang Y, Zheng DD, Xu HX, Wang T, Pan M, Shi JH, Zhu JH (2016) M1 macrophages promote aortic valve calcification mediated by microRNA-214/TWIST1 pathway in valvular interstitial cells. Am J Transl Res 8:5773–5783

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Aubin JE, Liu F, Malaval L, Gupta AK (1995) Osteoblast and chondroblast differentiation. Bone 17:77s–83s. https://doi.org/10.1016/8756-3282(95)00183-e

    Article  CAS  PubMed  Google Scholar 

  41. Gu X, Li M, Jin Y, Liu D, Wei F (2017) Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation. BMC Genet 18:100. https://doi.org/10.1186/s12863-017-0569-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yin Q, Wang J, Fu Q, Gu S, Rui Y (2018) CircRUNX2 through has-miR-203 regulates RUNX2 to prevent osteoporosis. J Cell Mol Med 22:6112–6121. https://doi.org/10.1111/jcmm.13888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wen J, Guan Z, Yu B, Guo J, Shi Y, Hu L (2020) Circular RNA hsa_circ_0076906 competes with OGN for miR-1305 biding site to alleviate the progression of osteoporosis. Int J Biochem Cell Biol 122:105719. https://doi.org/10.1016/j.biocel.2020.105719

    Article  CAS  PubMed  Google Scholar 

  44. Yang L, Zeng Z, Kang N, Yang JC, Wei X, Hai Y (2019) Circ-VANGL1 promotes the progression of osteoporosis by absorbing miRNA-217 to regulate RUNX2 expression. Eur Rev Med Pharmacol Sci 23:949–957. https://doi.org/10.26355/eurrev_201902_16981

    Article  CAS  PubMed  Google Scholar 

  45. Nurnberg ST, Guerraty MA, Wirka RC, Rao HS, Pjanic M et al (2020) Genomic profiling of human vascular cells identifies TWIST1 as a causal gene for common vascular diseases. PLoS Genet 16:e1008538. https://doi.org/10.1371/journal.pgen.1008538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miraoui H, Marie PJ (2010) Pivotal role of Twist in skeletal biology and pathology. Gene 468:1–7. https://doi.org/10.1016/j.gene.2010.07.013

    Article  CAS  PubMed  Google Scholar 

  47. Lee MP, Yutzey KE (2011) Twist1 directly regulates genes that promote cell proliferation and migration in developing heart valves. PLoS ONE 6:e29758. https://doi.org/10.1371/journal.pone.0029758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Quarto N, Senarath-Yapa K, Renda A, Longaker MT (2015) TWIST1 silencing enhances in vitro and in vivo osteogenic differentiation of human adipose-derived stem cells by triggering activation of BMP-ERK/FGF signaling and TAZ upregulation. Stem cells (Dayton, Ohio) 33:833–847. https://doi.org/10.1002/stem.1907

    Article  CAS  Google Scholar 

  49. Miraoui H, Severe N, Vaudin P, Pages JC, Marie PJ (2010) Molecular silencing of Twist1 enhances osteogenic differentiation of murine mesenchymal stem cells: implication of FGFR2 signaling. J Cell Biochem 110:1147–1154. https://doi.org/10.1002/jcb.22628

    Article  CAS  PubMed  Google Scholar 

  50. Danciu TE, Li Y, Koh A, Xiao G, McCauley LK, Franceschi RT (2012) The basic helix loop helix transcription factor Twist1 is a novel regulator of ATF4 in osteoblasts. J Cell Biochem 113:70–79. https://doi.org/10.1002/jcb.23329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang XW, Zhang BY, Wang SW, Gong DJ, Han L, Xu ZY, Liu XH (2014) Twist-related protein 1 negatively regulated osteoblastic transdifferentiation of human aortic valve interstitial cells by directly inhibiting runt-related transcription factor 2. J Thorac Cardiovasc Surg 148:1700-1708.e1701. https://doi.org/10.1016/j.jtcvs.2014.02.084

    Article  CAS  PubMed  Google Scholar 

  52. Catalano A, Bellone F, Morabito N, Corica F (2020) Sclerostin and vascular pathophysiology. Int J Mol Sci. https://doi.org/10.3390/ijms21134779

    Article  PubMed  PubMed Central  Google Scholar 

  53. Christman MA 2nd, Goetz DJ, Dickerson E, McCall KD, Lewis CJ, Benencia F, Silver MJ, Kohn LD, Malgor R (2008) Wnt5a is expressed in murine and human atherosclerotic lesions. Am J Physiol Heart Circ Physiol 294:H2864-2870. https://doi.org/10.1152/ajpheart.00982.2007

    Article  CAS  PubMed  Google Scholar 

  54. Quasnichka H, Slater SC, Beeching CA, Boehm M, Sala-Newby GB, George SJ (2006) Regulation of smooth muscle cell proliferation by beta-catenin/T-cell factor signaling involves modulation of cyclin D1 and p21 expression. Circ Res 99:1329–1337. https://doi.org/10.1161/01.res.0000253533.65446.33

    Article  CAS  PubMed  Google Scholar 

  55. Zheng D, Zang Y, Xu H, Wang Y, Cao X, Wang T, Pan M, Shi J, Li X (2019) MicroRNA-214 promotes the calcification of human aortic valve interstitial cells through the acceleration of inflammatory reactions with activated MyD88/NF-κB signaling. Clin Res Cardiol 108:691–702. https://doi.org/10.1007/s00392-018-1398-9

    Article  CAS  PubMed  Google Scholar 

  56. Sun C, Liu H, Si K, Wu Y, Zhao K, Xu R, Zhou Z, Zheng Z (2019) Meis2 represses the osteoblastic transdifferentiation of aortic valve interstitial cells through the Notch1/Twist1 pathway. Biochem Biophys Res Commun 509:455–461. https://doi.org/10.1016/j.bbrc.2018.12.040

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Substantial contributions to conception and design: CY; data acquisition, data analysis and interpretation: DW, CZ, CW; drafting the article or critically revising it for important intellectual content: CY; final approval of the version to be published: all authors; agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of the work are appropriately investigated and resolved: all authors.

Corresponding author

Correspondence to Cheng Yu.

Ethics declarations

Conflict of interest

The authors declare that they do not have conflict of interest.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

All patients had signed informed consent, and agreed that their tissues and cells would be used for any experimental work involving humans. The clinical trial program had been reviewed and approved by the Ethics Committee of Hainan General Hospital (Approval Number: HG20170305004).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Wu, D., Zhao, C. et al. CircRNA TGFBR2/MiR-25-3p/TWIST1 axis regulates osteoblast differentiation of human aortic valve interstitial cells. J Bone Miner Metab 39, 360–371 (2021). https://doi.org/10.1007/s00774-020-01164-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-020-01164-4

Keywords

Navigation