Skip to main content

Advertisement

Log in

Sparing effect of peritoneal dialysis vs hemodialysis on BMD changes and its impact on mortality

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Bone loss in end stage renal disease (ESRD) patients associates with fractures, vascular calcification, cardiovascular disease (CVD) and increased mortality. We investigated factors associated with changes of bone mineral density (ΔBMD) during the initial year on dialysis therapy and associations of ΔBMD with subsequent mortality in ESRD patients initiating dialysis.

Materials and methods

In 242 ESRD patients (median age 55 years, 61% men) starting dialysis with peritoneal dialysis (PD; n = 138) or hemodialysis (HD; n = 104), whole-body dual-energy X-ray absorptiometry (DXA), body composition, nutritional status and circulating biomarkers were assessed at baseline and 1 year after dialysis start. We used multivariate linear regression analysis to determine factors associated with ΔBMD, and fine and gray competing risk analysis to determine associations of ΔBMD with subsequent mortality risk.

Results

BMD decreased significantly in HD patients (significant reductions of BMDtotal and BMDleg, trunk, rib, pelvis and spine) but not in PD patients. HD compared to PD therapy associated with negative changes in BMDtotal (β=− 0.15), BMDhead (β=− 0.14), BMDleg (β=− 0.18) and BMDtrunk (β=− 0.16). Better preservation of BMD associated with significantly lower all-cause mortality for ΔBMDtotal (sub-hazard ratio, sHR, 0.91), ΔBMDhead (sHR 0.91) and ΔBMDleg (sHR 0.92), while only ΔBMDhead (sHR 0.92) had a beneficial effect on CVD-mortality.

Conclusions

PD had beneficial effect compared with HD on BMD changes during first year of dialysis therapy. Better preservation of BMD, especially in bone sites rich in cortical bone, associated with lower subsequent mortality. BMD in cortical bone may have stronger association with clinical outcome than BMD in trabecular bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lin Z-Z, Wang J-J, Chung C-R et al (2014) Epidemiology and mortality of hip fracture among patients on dialysis: Taiwan National Cohort Study. Bone 64:235–239. https://doi.org/10.1016/j.bone.2014.04.017

    Article  PubMed  Google Scholar 

  2. Tentori F, Mccullough K, Kilpatrick RD et al (2014) High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int 85:166–173. https://doi.org/10.1038/ki.2013.279

    Article  PubMed  Google Scholar 

  3. Runesson B, Trevisan M, Iseri K et al (2019) Fractures and their sequelae in non-dialysis-dependent chronic kidney disease: the Stockholm CREAtinine measurements project. Nephrol Dial Transplant 1–8. https://doi.org/10.1093/ndt/gfz142

  4. Demer L, Tintut Y (2010) The bone-vascular axis in chronic kidney disease. Curr Opin Nephrol Hypertens 19:349–353. https://doi.org/10.1097/MNH.0b013e32833a3d67

    Article  PubMed  PubMed Central  Google Scholar 

  5. Damasiewicz MJ, Nickolas TL (2018) Rethinking bone disease in kidney disease. JBMR plus 2:309–322. https://doi.org/10.1002/jbm4.10117

    Article  PubMed  PubMed Central  Google Scholar 

  6. Khairallah P, Nickolas TL (2018) Updates in CKD-associated osteoporosis. Curr Osteoporos Rep 16:712–723. https://doi.org/10.1007/s11914-018-0491-3

    Article  PubMed  PubMed Central  Google Scholar 

  7. Moe SM (2017) Renal osteodystrophy or kidney-induced osteoporosis? Curr Osteoporos Rep 15:194–197. https://doi.org/10.1007/s11914-017-0364-1

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen Z, Sun J, Haarhaus M et al (2017) Bone mineral density of extremities is associated with coronary calcification and biopsy-verified vascular calcification in living-donor renal transplant recipients. J Bone Miner Metab 35:536–543. https://doi.org/10.1007/s00774-016-0788-1

    Article  CAS  PubMed  Google Scholar 

  9. Chen Z, Qureshi AR, Brismar TB et al (2019) Differences in association of lower bone mineral density with higher coronary calcification in female and male end-stage renal disease patients. BMC Nephrol 20:59. https://doi.org/10.1186/s12882-019-1235-z

    Article  PubMed  PubMed Central  Google Scholar 

  10. London GM, Marchais SJ, Guérin AP, Boutouyrie P, Métivier F, de Vernejoul M-C (2008) Association of bone activity, calcium load, aortic stiffness, and calcifications in ESRD. J Am Soc Nephrol 19:1827–1835. https://doi.org/10.1681/ASN.2007050622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Iseri K, Dai L, Chen Z et al (2020) Bone mineral density and mortality in end-stage renal disease patients. Clin Kidney J 13:307–321. https://doi.org/10.1093/ckj/sfaa089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mukai H, Dai L, Chen Z et al (2020) Inverse J-shaped relation between coronary arterial calcium density and mortality in advanced chronic kidney disease. Nephrol Dial Transplant 35:1202–1211. https://doi.org/10.1093/ndt/gfy352

    Article  CAS  PubMed  Google Scholar 

  13. Matsuoka M, Iseki K, Tamashiro M et al (2004) Impact of high coronary artery calcification score (CACS) on survival in patients on chronic hemodialysis. Clin Exp Nephrol 8:54–58. https://doi.org/10.1007/s10157-003-0260-0

    Article  PubMed  Google Scholar 

  14. Mathew AT, Hazzan A, Jhaveri KD et al (2014) Increasing hip fractures in patients receiving hemodialysis and peritoneal dialysis. Am J Nephrol 40:451–457. https://doi.org/10.1159/000369039

    Article  CAS  PubMed  Google Scholar 

  15. Chen Y-J, Kung P-T, Wang Y-H et al (2014) Greater risk of hip fracture in hemodialysis than in peritoneal dialysis. Osteoporos Int 25:1513–1518. https://doi.org/10.1007/s00198-014-2632-6

    Article  CAS  PubMed  Google Scholar 

  16. Iseri K, Carrero JJ, Evans M et al (2020) Major fractures after initiation of dialysis: incidence, predictors and association with mortality. Bone 133:115242. https://doi.org/10.1016/j.bone.2020.115242

    Article  PubMed  Google Scholar 

  17. Iseri K, Qureshi AR, Dai L et al (2019) Bone mineral density at different sites and 5 years mortality in end-stage renal disease patients: a cohort study. Bone 2019:115075. https://doi.org/10.1016/j.bone.2019.115075

    Article  CAS  Google Scholar 

  18. Matsubara K, Suliman ME, Qureshi AR et al (2008) Bone mineral density in end-stage renal disease patients: association with wasting, cardiovascular disease and mortality. Blood Purif 26:284–290. https://doi.org/10.1159/000126925

    Article  PubMed  Google Scholar 

  19. Park S-H, Jia T, Qureshi AR et al (2013) Determinants and survival implications of low bone mineral density in end-stage renal disease patients. J Nephrol 26:485–494. https://doi.org/10.5301/jn.5000185

    Article  CAS  PubMed  Google Scholar 

  20. Orlic L, Mikolasevic I, Crncevic-Orlic Z, Jakopcic I, Josipovic J, Pavlovic D (2017) Forearm bone mass predicts mortality in chronic hemodialysis patients. J Bone Miner Metab 35:396–404. https://doi.org/10.1007/s00774-016-0766-7

    Article  PubMed  Google Scholar 

  21. Disthabanchong S, Jongjirasiri S, Adirekkiat S et al (2014) Low hip bone mineral density predicts mortality in maintenance hemodialysis patients: a five-year follow-up study. Blood Purif 37:33–38. https://doi.org/10.1159/000357639

    Article  CAS  PubMed  Google Scholar 

  22. Taal MW, Roe S, Masud T, Green D, Porter C, Cassidy MJD (2003) Total hip bone mass predicts survival in chronic hemodialysis patients. Kidney Int 63:1116–1120. https://doi.org/10.1046/j.1523-1755.2003.00837.x

    Article  PubMed  Google Scholar 

  23. Stenvinkel P, Heimbürger O, Paultre F et al (1999) Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int 55:1899–1911. https://doi.org/10.1046/j.1523-1755.1999.00422.x

    Article  CAS  PubMed  Google Scholar 

  24. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Supp 76:S1–130. https://doi.org/10.1038/ki.2009.188

    Article  Google Scholar 

  25. D’Agostino RB, Vasan RS, Pencina MJ et al (2008) General cardiovascular risk profile for use in primary care. Circulation 117:743–753. https://doi.org/10.1161/CIRCULATIONAHA.107.699579

    Article  PubMed  Google Scholar 

  26. Qureshi AR, Alvestrand A, Danielsson A et al (1998) Factors predicting malnutrition in hemodialysis patients: a cross-sectional study. Kidney Int 53:773–782. https://doi.org/10.1046/j.1523-1755.1998.00812.x

    Article  CAS  PubMed  Google Scholar 

  27. Kyle UG, Schutz Y, Dupertuis YM, Pichard C (2003) Body composition interpretation. Contributions of the fat-free mass index and the body fat mass index. Nutrition 19:597–604. https://doi.org/10.1016/s0899-9007(03)00061-3

    Article  PubMed  Google Scholar 

  28. Klemetti E, Vainio P, Lassila V, Alhava E (1993) Cortical bone mineral density in the mandible and osteoporosis status in postmenopausal women. Scand J Dent Res 101:219–223. https://www.ncbi.nlm.nih.gov/pubmed/8362200

  29. Bazzocchi A, Ponti F, Albisinni U, Battista G, Guglielmi G (2016) DXA: technical aspects and application. Eur J Radiol 85:1481–1492. https://doi.org/10.1016/j.ejrad.2016.04.004

    Article  PubMed  Google Scholar 

  30. Nguyen ND, Center JR, Eisman JA, Nguyen TV (2007) Bone loss, weight loss, and weight fluctuation predict mortality risk in elderly men and women. J Bone Miner Res 22:1147–1154. https://doi.org/10.1359/jbmr.070412

    Article  PubMed  Google Scholar 

  31. Cauley JA, Lui L, Barnes D et al (2009) Successful skeletal aging: a marker of low fracture risk and longevity. The study of osteoporotic fractures (SOF). J Bone Miner Res 24:134–143. https://doi.org/10.1359/jbmr.080813

    Article  PubMed  Google Scholar 

  32. Bliuc D, Nguyen ND, Alarkawi D, Nguyen TV, Eisman JA, Center JR (2015) Accelerated bone loss and increased post-fracture mortality in elderly women and men. Osteoporos Int 26:1331–1339. https://doi.org/10.1007/s00198-014-3014-9

    Article  CAS  PubMed  Google Scholar 

  33. Kohno K, Inaba M, Okuno S et al (2009) Association of reduction in bone mineral density with mortality in male hemodialysis patients. Calcif Tissue Int 84:180–185. https://doi.org/10.1007/s00223-008-9206-6

    Article  CAS  PubMed  Google Scholar 

  34. Farahmand BY, Michaëlsson K, Ahlbom A, Ljunghall S, Baron JA (2005) Swedish hip fracture study group. Survival after hip fracture. Osteoporos Int 16:1583–1590. https://doi.org/10.1007/s00198-005-2024-z

    Article  PubMed  Google Scholar 

  35. Katsoulis M, Benetou V, Karapetyan T et al (2017) Excess mortality after hip fracture in elderly persons from Europe and the USA: the CHANCES project. J Intern Med 281:300–310. https://doi.org/10.1111/joim.12586

    Article  CAS  PubMed  Google Scholar 

  36. Campos-Obando N, Kavousi M, Roeters van Lennep JE et al (2015) Bone health and coronary artery calcification: the Rotterdam Study. Atherosclerosis 241:278–283. https://doi.org/10.1016/j.atherosclerosis.2015.02.013

    Article  CAS  PubMed  Google Scholar 

  37. El Maghraoui A, Roux C (2008) DXA scanning in clinical practice. QJM 101:605–617. https://doi.org/10.1093/qjmed/hcn022

    Article  PubMed  Google Scholar 

  38. Chen Z, Qureshi AR, Ripsweden J et al (2016) Vertebral bone density associates with coronary artery calcification and is an independent predictor of poor outcome in end-stage renal disease patients. Bone 92:50–57. https://doi.org/10.1016/j.bone.2016.08.007

    Article  PubMed  Google Scholar 

  39. Bachrach LK, Gordon CM (2016) Section on endocrinology. Bone densitometry in children and adolescents. Pediatrics 138:339–346. https://doi.org/10.1542/peds.2016-2398

    Article  Google Scholar 

  40. Chan TM, Pun KK, Cheng IKP (1992) Total and regional bone densities in dialysis patients. Nephrol Dial Transplant 7:835–839. https://doi.org/10.1093/oxfordjournals.ndt.a092219

    Article  CAS  PubMed  Google Scholar 

  41. Nickolas TL, Stein EM, Dworakowski E et al (2013) Rapid cortical bone loss in patients with chronic kidney disease. J Bone Miner Res 28:1811–1820. https://doi.org/10.1002/jbmr.1916

    Article  CAS  PubMed  Google Scholar 

  42. Silva BC, Costa AG, Cusano NE, Kousteni S, Bilezikian JP (2011) Catabolic and anabolic actions of parathyroid hormone on the skeleton. J Endocrinol Invest 34:801–810. https://doi.org/10.3275/7925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brismar TB, Ringertz J (1996) Effect of bone density of the head on total body DEXA measurements in 100 healthy Swedish women. Acta Radiol 37:101–106. https://doi.org/10.1080/02841859609174368

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all individuals who participated in the study and gratefully acknowledge the extensive work carried out by the staff at the clinical investigational unit and the Renal Laboratory, Department of Renal Medicine, Karolinska University Hospital Huddinge. Ken Iseri received support from Uehara Memorial Foundation, Japan. The study also benefited from generous support from Strategic Research Program in Diabetes at Karolinska Institutet (Swedish Research Council Grant No 2009-1068), European Union's Horizon 2020 research and innovation Program under the Marie Skłodowska-Curie Grant agreement No 722609; www.intricare.eu), Martin Rind Foundation, Heart and Lung Foundation, Njurfonden, and Westmans Foundation. Baxter Novum is the result of a grant from Baxter Healthcare to Karolinska Institutet.

Author information

Authors and Affiliations

Authors

Contributions

PS, OH, and PB designed the MIA cohort study and recruited patients included in the present study. KI and ARQ designed the present study, performed statistical analyses, interpreted the results, prepared figures and tables, and drafted the manuscript. All authors contributed to data collection, revised the manuscript, and approved the final version of the manuscript.

Corresponding author

Correspondence to Ken Iseri.

Ethics declarations

Conflict of interest

BL is employed by Baxter Healthcare Corporation. PS is on scientific advisory boards of REATA and Baxter Healthcare. None of the other authors declare any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iseri, K., Qureshi, A.R., Ripsweden, J. et al. Sparing effect of peritoneal dialysis vs hemodialysis on BMD changes and its impact on mortality. J Bone Miner Metab 39, 260–269 (2021). https://doi.org/10.1007/s00774-020-01144-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-020-01144-8

Keywords

Navigation