Skip to main content

Effects of mild hyperbaric oxygen on osteoporosis induced by hindlimb unloading in rats

Abstract

Introduction

Disuse-induced bone loss is caused by a suppression of osteoblastic bone formation and an increase in osteoclastic bone resorption. There are few data available for the effects of environmental conditions, i.e., atmospheric pressure and/or oxygen concentration, on osteoporosis. This study examined the effects of mild hyperbaric oxygen at 1317 hPa with 40% oxygen on unloading-induced osteoporosis.

Materials and methods

Eighteen 8-week old male Wistar rats were randomly divided into three groups: the control for 21 days without unloading and mild hyperbaric oxygen (NOR, n = 6), the unloading for 21 days and recovery for 10 days without mild hyperbaric oxygen (HU + NOR, n = 6), and the unloading for 21 days and recovery for 10 days with mild hyperbaric oxygen (HU + MHO, n = 6).

Results

The cortical thickness and trabecular bone surface area were decreased in the HU + NOR group compared to the NOR group. There were no differences between the NOR and HU + MHO groups. Osteoclast surface area and Sclerostin (Sost) mRNA expression levels were decreased in the HU + MHO group compared to the HU + NOR group. These results suggested that the loss of the cortical and trabecular bone is inhibited by mild hyperbaric oxygen, because of an inhibition of osteoclasts and enhancement of bone formation with decreased Sost expression.

Conclusions

We conclude that exposure to mild hyperbaric oxygen partially protects from the osteoporosis induced by hindlimb unloading.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Investig 115:3318–3325

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Nagaraja MP, Jo H (2014) The role of mechanical stimulation in recovery of bone loss-high versus low magnitude and frequency of force. Life (Basel) 4:117–130

    Google Scholar 

  3. Fujita K, Roforth MM, Demaray S, McGregor U, Kirmani S, McCready LK, Peterson JM, Drake MT, Monroe DG, Khosla S (2014) Effects of estrogen on bone mRNA levels of sclerostin and other genes relevant to bone metabolism in postmenopausal women. J Clin Endocrinol Metab 99:E81–E88

    PubMed  Google Scholar 

  4. Metzger CE, Brezicha JE, Elizondo JP, Narayanan SA, Hogan HA, Bloomfield SA (2017) Differential responses of mechanosensitive osteocyte proteins in fore- and hindlimbs of hindlimb-unloaded rats. Bone 105:26–34

    PubMed  CAS  Google Scholar 

  5. Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM (1990) Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 5:843–850

    PubMed  CAS  Google Scholar 

  6. Iwamoto J, Takeda T, Sato Y (2005) Effect of treadmill exercise on bone mass in female rats. Exp Anim 54:1–6

    PubMed  CAS  Google Scholar 

  7. Berg HE, Eiken O, Miklavcic L, Mekjavic IB (2007) Hip, thigh and calf muscle atrophy and bone loss after 5-week bed rest inactivity. Eur J Appl Physiol 99:283–289

    PubMed  Google Scholar 

  8. Klein-Nulend J, Bacabac RG (2012) Bone adaptation and regeneration—new developments. Int J Mod Phys Conf Ser 17:34–43

    CAS  Google Scholar 

  9. Bergstrom I, Isaksson H, Koskela A, Tuukkanen J, Ohlsson C, Andersson G, Windahl SH (2018) Prednisolone treatment reduces the osteogenic effects of loading in mice. Bone 112:10–18

    PubMed  CAS  Google Scholar 

  10. Ishihara A, Fujino H, Nagatomo F, Takeda I, Ohira Y (2008) Gene expression levels of heat shock proteins in the soleus and plantaris muscles of rats after hindlimb suspension or spaceflight. J Physiol Sci 58:413–417

    PubMed  CAS  Google Scholar 

  11. Zhang YN, Shi WG, Li H, Hua JR, Feng X, Wei WJ, Wang JF, He JP, Lei SW (2018) Bone loss induced by simulated microgravity, ionizing radiation and/or ultradian rhythms in the hindlimbs of rats. Biomed Environ Sci 31:126–135

    PubMed  Google Scholar 

  12. Falcai MJ, Zamarioli A, Leoni GB, de Sousa Neto MD, Volpon JB (2015) Swimming activity prevents the unloading induced loss of bone mass, architecture, and strength in rats. Biomed Res Int 2015:507848

    PubMed  PubMed Central  Google Scholar 

  13. Li B, Liu J, Zhao J, Ma JX, Jia HB, Zhang Y, Xing GS, Ma XL (2017) LncRNA-H19 modulates Wnt/beta-catenin signaling by targeting Dkk4 in hindlimb unloaded rat. Orthop Surg 9:319–327

    PubMed  PubMed Central  Google Scholar 

  14. Peres-Ueno MJ, Stringhetta-Garcia CT, Castoldi RC, Ozaki GAT, Chaves-Neto AH, Dornelles RCM, Louzada MJQ (2017) Model of hindlimb unloading in adult female rats: characterizing bone physicochemical, microstructural, and biomechanical properties. PLoS ONE 12:e0189121

    PubMed  PubMed Central  Google Scholar 

  15. Ohira Y, Tanaka T, Yoshinaga T, Kawano F, Nomura T, Nonaka I, Allen DL, Roy RR, Edgerton VR (2001) Ontogenetic, gravity-dependent development of rat soleus muscle. Am J Physiol Cell Physiol 280:C1008–1016

    PubMed  CAS  Google Scholar 

  16. Bloomfield SA, Allen MR, Hogan HA, Delp MD (2002) Site- and compartment-specific changes in bone with hindlimb unloading in mature adult rats. Bone 31:149–157

    PubMed  CAS  Google Scholar 

  17. Shirazi-Fard Y, Kupke JS, Bloomfield SA, Hogan HA (2013) Discordant recovery of bone mass and mechanical properties during prolonged recovery from disuse. Bone 52:433–443

    PubMed  Google Scholar 

  18. Gill AL, Bell CNA (2004) Hyperbaric oxygen: its uses, mechanisms of action and outcomes. QJM Int J Med 97:385–395

    CAS  Google Scholar 

  19. Thom SR (2009) Oxidative stress is fundamental to hyperbaric oxygen therapy. J Appl Physiol (1985) 106:988–995

    CAS  Google Scholar 

  20. Oter S, Korkmaz A, Topal T, Ozcan O, Sadir S, Ozler M, Ogur R, Bilgic H (2005) Correlation between hyperbaric oxygen exposure pressures and oxidative parameters in rat lung, brain, and erythrocytes. Clin Biochem 38:706–711

    PubMed  CAS  Google Scholar 

  21. Lima MA, Farage L, Cury MC, Bahamad FJ (2014) Update on middle ear barotrauma after hyperbaric oxygen therapy-insights on pathophysiology. Int Arch Otorhinolaryngol 18:204–209

    PubMed  PubMed Central  Google Scholar 

  22. Ishihara A, Nagatomo F, Fujino H, Kondo H (2014) Exposure to mild hyperbaric oxygen increases blood flow and resting energy expenditure but not oxidative stress. J Sci Res Rep 3:1886–1896

    Google Scholar 

  23. Takemura A, Roy RR, Yoshihara I, Ishihara A (2017) Unloading-induced atrophy and decreased oxidative capacity of the soleus muscle in rats are reversed by pre- and postconditioning with mild hyperbaric oxygen. Physiol Rep 5:e13353

    PubMed  PubMed Central  Google Scholar 

  24. Ishihara A, Kawano F, Okiura T, Morimatsu F, Ohira Y (2005) Hyperbaric exposure with high oxygen concentration enhances oxidative capacity of neuromuscular units. Neurosci Res 52:146–152

    PubMed  CAS  Google Scholar 

  25. Matsumoto A, Nagatomo F, Yasuda K, Tsuda K, Ishihara A (2007) Hyperbaric exposure with high oxygen concentration improves altered fiber types in the plantaris muscle of diabetic Goto-Kakizaki rats. J Physiol Sci 57:133–136

    PubMed  CAS  Google Scholar 

  26. Nakaoka D, Sugimoto T, Kaji H, Kanzawa M, Yano S, Yamauchi M, Sugishita T, Chihara K (2001) Determinants of bone mineral density and spinal fracture risk in postmenopausal Japanese women. Osteoporos Int 12:548–554

    PubMed  CAS  Google Scholar 

  27. Kaji H (2016) Effects of myokines on bone. BoneKEy Rep 5:826

    PubMed  PubMed Central  Google Scholar 

  28. Nagatomo F, Fujino H, Kondo H, Suzuki H, Kouzaki M, Takeda I, Ishihara A (2011) PGC-1alpha and FOXO1 mRNA levels and fiber characteristics of the soleus and plantaris muscles in rats after hindlimb unloading. Histol Histopathol 26:1545–1553

    PubMed  CAS  Google Scholar 

  29. Ellman R, Spatz J, Cloutier A, Palme R, Christiansen BA, Bouxsein ML (2013) Partial reductions in mechanical loading yield proportional changes in bone density, bone architecture, and muscle mass. J Bone Miner Res 28:875–885

    PubMed  Google Scholar 

  30. Globus RK, Morey-Holton E (2016) Hindlimb unloading: rodent analog for microgravity. J Appl Physiol (1985) 120:1196–1206

    CAS  Google Scholar 

  31. Ziambaras K, Civitelli R, Papavasiliou SS (2005) Weightlessness and skeleton homeostasis. Hormones (Athens) 4:18–27

    Google Scholar 

  32. Kondo H, Ezura Y, Nakamoto T, Hayata T, Notomi T, Sorimachi H, Takeda S, Noda M (2011) MURF1 deficiency suppresses unloading-induced effects on osteoblasts and osteoclasts to lead to bone loss. J Cell Biochem 112:3525–3530

    PubMed  CAS  Google Scholar 

  33. Stein GS, Lian JB (1993) Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev 14:424–442

    PubMed  CAS  Google Scholar 

  34. Bikle DD, Harris J, Halloran BP, Morey-Holton E (1994) Altered skeletal pattern of gene expression in response to spaceflight and hindlimb elevation. Am J Physiol 267:E822–E827

    PubMed  CAS  Google Scholar 

  35. Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan HL, Elliott G, Kelley MJ, Sarosi I, Wang L, Xia XZ, Elliott R, Chiu L, Black T, Scully S, Capparelli C, Morony S, Shimamoto G, Bass MB, Boyle WJ (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 96:3540–3545

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323

    PubMed  CAS  Google Scholar 

  37. Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, Lacza C, Wuyts W, Van Den Ende J, Willems P, Paes-Alves AF, Hill S, Bueno M, Ramos FJ, Tacconi P, Dikkers FG, Stratakis C, Lindpaintner K, Vickery B, Foernzler D, Van Hul W (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10:537–543

    PubMed  CAS  Google Scholar 

  38. Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D'Agostin D, Kurahara C, Gao Y, Cao J, Gong J, Asuncion F, Barrero M, Warmington K, Dwyer D, Stolina M, Morony S, Sarosi I, Kostenuik PJ, Lacey DL, Simonet WS, Ke HZ, Paszty C (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23:860–869

    PubMed  Google Scholar 

  39. ten Dijke P, Krause C, de Gorter DJ, Lowik CW, van Bezooijen RL (2008) Osteocyte-derived sclerostin inhibits bone formation: its role in bone morphogenetic protein and Wnt signaling. J Bone Jt Surg Am 90(Suppl 1):31–35

    Google Scholar 

  40. Macias BR, Swift JM, Nilsson MI, Hogan HA, Bouse SD, Bloomfield SA (2012) Simulated resistance training, but not alendronate, increases cortical bone formation and suppresses sclerostin during disuse. J Appl Physiol 112:918–925

    PubMed  CAS  Google Scholar 

  41. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido TM, Harris SE, Turner CH (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283:5866–5875

    PubMed  CAS  Google Scholar 

  42. Krishnan V, Bryant HU, Macdougald OA (2006) Regulation of bone mass by Wnt signaling. J Clin Investig 116:1202–1209

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Semenov M, Tamai K, He X (2005) SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem 280:26770–26775

    PubMed  CAS  Google Scholar 

  44. Leach RM, Rees PJ, Wilmshurst P (1998) Hyperbaric oxygen therapy. BMJ 317:1140–1143

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Bettis T, Kim BJ, Hamrick MW (2018) Impact of muscle atrophy on bone metabolism and bone strength: implications for muscle–bone crosstalk with aging and disuse. Osteoporos Int 29:1713–1720

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Brotto M, Johnson ML (2014) Endocrine crosstalk between muscle and bone. Curr Osteoporos Rep 12:135–141

    PubMed  PubMed Central  Google Scholar 

  47. Mera P, Laue K, Ferron M, Confavreux C, Wei J, Galan-Diez M, Lacampagne A, Mitchell SJ, Mattison JA, Chen Y, Bacchetta J, Szulc P, Kitsis RN, de Cabo R, Friedman RA, Torsitano C, McGraw TE, Puchowicz M, Kurland I, Karsenty G (2016) Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab 23:1078–1092

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Handschin C, Spiegelman BM (2006) Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27:728–735

    PubMed  CAS  Google Scholar 

  49. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839

    PubMed  CAS  Google Scholar 

  50. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    PubMed  CAS  Google Scholar 

  51. Colaianni G, Lippo L, Sanesi L, Brunetti G, Celi M, Cirulli N, Passeri G, Reseland J, Schipani E, Faienza MF, Tarantino U, Colucci S, Grano M (2018) Deletion of the transcription factor PGC-1alpha in mice negatively regulates bone mass. Calcif Tissue Int 103:638–652

    PubMed  CAS  Google Scholar 

  52. Kanazawa I, Takeno A, Tanaka KI, Notsu M, Sugimoto T (2018) Osteoblast AMP-activated protein kinase regulates postnatal skeletal development in male mice. Endocrinology 159:597–608

    PubMed  CAS  Google Scholar 

  53. Yokomoto-Umakoshi M, Kanazawa I, Takeno A, Tanaka K, Notsu M, Sugimoto T (2016) Activation of AMP-activated protein kinase decreases receptor activator of NF-κB ligand expression and increases sclerostin expression by inhibiting the mevalonate pathway in osteocytic MLO-Y4 cells. Biochem Biophys Res Commun 469:791–796

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan society for the promotion of science (Project number 17J02040). The authors are grateful to Dr. Takahiro Yamashita for technical assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai Takemura.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This study was approved by the Ethics Committee for Human and Animal Research of the Graduate School of Human and Environmental Studies of Kyoto University (Approval number: 30-A-4). All experimental and animal care procedures were conducted in accordance with the Guiding Principles for the Care and Use of Animals in the Field of Physiological Science (The Physiological Society of Japan, 2015).

Informed consent

Informed consent was not required for this type of study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Takemura, A., Pajevic, P.D., Egawa, T. et al. Effects of mild hyperbaric oxygen on osteoporosis induced by hindlimb unloading in rats. J Bone Miner Metab 38, 631–638 (2020). https://doi.org/10.1007/s00774-020-01100-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-020-01100-6

Keywords

  • Hindlimb unloading
  • Osteoporosis
  • Mild hyperbaric oxygen
  • Oxidative metabolism
  • Bone loss