Skip to main content

Advertisement

Log in

Skeletal and mineral metabolic effects of risedronate in a rat model of high-turnover renal osteodystrophy

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

High-turnover bone disease is a major consequence of SHPT and may explain the high risk for fracture in patients with advanced chronic kidney disease (CKD). Bisphosphonates suppress bone turnover and improve bone strength, but their effects have not been fully characterized in advanced CKD with severe SHPT. Bisphosphonates also increase 1,25-dihydroxyvitamin D levels in normal and uremic rats, but the underlying mechanism remains to be determined.

Materials and methods

We investigated the skeletal and mineral metabolic effects of RIS, a pyridinyl bisphosphonate, in rats with severe SHPT induced by 5/6 nephrectomy plus a high phosphate diet.

Results

Nephrectomized rats developed severe SHPT, along with hyperphosphatemia, low 1,25-dihydroxyvitamin D, and markedly increased FGF23. Moreover, these rats exhibited characteristic features of high-turnover renal osteodystrophy, including increased indices of trabecular bone turnover, decreased cortical bone thickness, inferior cortical biomechanical properties, and a prominent increase in peritrabecular fibrosis. RIS treatment increased bone volume and partially attenuated trabecular bone remodeling, cortical bone loss, and mechanical properties, whereas it produced a marked improvement in peritrabecular fibrosis along with a corresponding decrease in osteogenic gene markers. RIS treatment also suppressed the elevation of FGF23, which was associated with increased 1,25-dihydroxyvitamin D.

Conclusions

In a rat model of severe SHPT, treatment with RIS partially attenuated histological manifestations of high-turnover bone disease. RIS treatment also suppressed the elevation of FGF23, which may explain the increased 1,25-dihydroxyvitamin D production during the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nickolas TL, McMahon DJ, Shane E (2006) Relationship between moderate to severe kidney disease and hip fracture in the United States. J Am Soc Nephrol 17:3223–3232

    PubMed  Google Scholar 

  2. Ensrud KE, Lui LY, Taylor BC, Ishani A, Shlipak MG, Stone KL, Cauley JA, Jamal SA, Antoniucci DM, Cummings SR (2007) Renal function and risk of hip and vertebral fractures in older women. Arch Intern Med 167:133–139

    PubMed  Google Scholar 

  3. Tentori F, McCullough K, Kilpatrick RD, Bradbury BD, Robinson BM, Kerr PG, Pisoni RL (2014) High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int 85:166–173

    PubMed  Google Scholar 

  4. Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int 69:1945–1953

    CAS  Google Scholar 

  5. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM (2004) Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol 15:2208–2218

    CAS  Google Scholar 

  6. Danese MD, Kim J, Doan QV, Dylan M, Griffiths R, Chertow GM (2006) PTH and the risks for hip, vertebral, and pelvic fractures among patients on dialysis. Am J Kidney Dis 47:149–156

    Google Scholar 

  7. Jadoul M, Albert JM, Akiba T, Akizawa T, Arab L, Bragg-Gresham JL, Mason N, Prutz KG, Young EW, Pisoni RL (2006) Incidence and risk factors for hip or other bone fractures among hemodialysis patients in the dialysis outcomes and practice patterns study. Kidney Int 70:1358–1366

    CAS  PubMed  Google Scholar 

  8. Behets G, Spasovski G, Sterling L, Goodman WG, Spiegel DM, De Broe ME, D'Haese PC (2015) Bone histomorphometry before and after long-term treatment with cinacalcet in dialysis patients with secondary hyperparathyroidism. Kidney Int 87:846–856

    CAS  PubMed  Google Scholar 

  9. Moe S, Abdalla S, Chertow G, Parfrey P, Block GA, Correa-Rotter R, Floege J, Herzog CA, London GM, Mahaffey KW, Wheeler DC, Dehmel B, Goodman WG, Drüeke TB (2015) Effects of cinacalcet on fracture events in patients receiving hemodialysis: the EVOLVE trial. J Am Soc Nephrol 26:1466–1475

    CAS  Google Scholar 

  10. Yajima A, Ogawa Y, Takahashi H, Tominaga Y, Inou T, Otsubo O (2003) Changes of bone remodeling immediately after parathyroidectomy for secondary hyperparathyroidism. Am J Kidney Dis 42:729–738

    PubMed  Google Scholar 

  11. Rudser K, de Boer I, Dooley A, Young B, Kestenbaum B (2007) Fracture risk after parathyroidectomy among chronic hemodialysis patients. J Am Soc Nephrol 18:2401–2407

    PubMed  Google Scholar 

  12. Arneson T, Li S, Liu J, Kilpatrick R, Newsome B, Peter W (2013) Trends in hip fracture rates in US hemodialysis patients, 1993–2010. Am J Kidney Dis 62:747–754

    PubMed  Google Scholar 

  13. Wakasugi M, Kazama J, Wada A, Hamano T, Masakane I, Narita I (2018) Hip fracture trends in Japanese dialysis patients, 2008–2013. Am J Kidney Dis 71:173–181

    PubMed  Google Scholar 

  14. Harris ST, Watts NB, Genant HK, McKeever CD, Hangartner T, Keller M, Chesnut CH 3rd, Brown J, Eriksen EF, Hoseyni MS, Axelrod DW, Miller PD (1999) Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. JAMA 282:1344–1352

    CAS  Google Scholar 

  15. McClung MR, Geusens P, Miller PD, Zippel H, Bensen WG, Roux C, Adami S, Fogelman I, Diamond T, Eastell R, Meunier PJ, Reginster JY (2001) Effect of risedronate on the risk of hip fracture in elderly women. N Engl J Med 344:333–340

    CAS  Google Scholar 

  16. Miller PD, Roux C, Boonen S, Barton IP, Dunlap LE, Burgio DE (2005) Safety and efficacy of risedronate in patients with age-related reduced renal function as estimated by the Cockcroft and Gault method: a pooled analysis of nine clinical trials. J Bone Miner Res 20:2105–2115

    CAS  Google Scholar 

  17. Geng Z, Monier-Faugere MC, Bauss F, Malluche HH (2000) Short-term administration of the bisphosphonate ibandronate increases bone volume and prevents hyperparathyroid bone changes in mild experimental renal failure. Clin Nephrol 54:45–53

    CAS  PubMed  Google Scholar 

  18. Tomat A, Gamba CA, Mandalunis P, De Grandi MC, Somoza J, Friedman S, Zeni S (2005) Changes in bone volume and bone resorption by olpadronate treatment in an experimental model of uremic bone disease. J Musculoskelet Nueronal Interact 5:174–181

    CAS  Google Scholar 

  19. Jokihaara J, Pörsti IH, Kööbi P, Jolma PM, Mustonen JT, Saha HH, Sievänen H, Kannus P, Iwaniec UT, Turner RT, Järvinen TL (2008) Treatment of experimental renal osteodystrophy with pamidronate. Kidney Int 74:319–327

    CAS  PubMed  Google Scholar 

  20. Lomashvili KA, Monier-Faugere M-C, Wang X, Malluche HH, O'Neill WC (2009) Effect of bisphosphonates on vascular calcification and bone metabolism in experimental renal failure. Kidney Int 75:617–625

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fischer D-C, Jensen C, Rahn A, Salewski B, Kundt G, Behets GJ, D'Haese P, Haffner D (2010) Ibandronate affects bone growth and mineralization in rats with normal and reduced renal function. Pediatr Nephrol 26:111–117

    PubMed  Google Scholar 

  22. Allen MR, Chen NX, Gattone VH II, Chen X, Carr AJ, LeBlanc P, Brown D, Moe SM (2012) Skeletal effects of zoledronic acid in an animal model of chronic kidney disease. Osteoporos Int 24:1471–1481

    PubMed  PubMed Central  Google Scholar 

  23. Moe SM, Chen NX, Newman CL, Gattone VH II, Organ JM, Chen X, Allen MR (2014) A comparison of calcium to zoledronic acid for improvement of cortical bone in an animal model of CKD. J Bone Miner Res 29:902–910

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J, Collerone G, Jüppner H, Wolf M (2005) Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol 16:2205–2215

    CAS  PubMed  Google Scholar 

  25. Hasegawa H, Nagano N, Urakawa I, Yamazaki Y, Iijima K, Fujita T, Yamashita T, Fukumoto S, Shimada T (2010) Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int 78:975–980

    CAS  PubMed  Google Scholar 

  26. Komaba H, Fukagawa M (2010) FGF23—parathyroid interaction: implications in chronic kidney disease. Kidney Int 77:292–298

    CAS  PubMed  Google Scholar 

  27. Felsenfeld A, Jara A, Avedian G, Kleeman C (2000) Effects of fasting, feeding, and bisphosphonate administration on serum calcitriol levels in phosphate-deprived rats. Kidney Int 58:1016–1022

    CAS  PubMed  Google Scholar 

  28. Bonjour J-P, Treschel U, Taylor CM, Fleisch H (1988) Parathyroid hormone-independent regulation of 1,25(OH)2D in response to inhibition of bone resorption. Am J Physiol 254:E260–E264

    CAS  PubMed  Google Scholar 

  29. Nagao Y, Ishitobi Y, Kinoshita H, Fukushima S, Kawashima H (1991) YM175, a new bisphosphonate, increases serum 1,25-dihydroxyvitamin D in rats via stimulating renal 1-hydroxylase activity. Biochem Biophys Res Commun 180:1172–1178

    CAS  PubMed  Google Scholar 

  30. Ito M, Nakayama K, Konaka A, Sakata K, Ikeda K, Maruyama T (2006) Effects of a prostaglandin EP4 agonist, ONO-4819, and risedronate on trabecular microstructure and bone strength in mature ovariectomized rats. Bone 39:453–459

    CAS  PubMed  Google Scholar 

  31. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28:2–17

    PubMed  PubMed Central  Google Scholar 

  32. Tamagaki K, Yuan Q, Ohkawa H, Imazeki I, Moriguchi Y, Imai N, Sasaki S, Takeda K, Fukagawa M (2006) Severe hyperparathyroidism with bone abnormalities and metastatic calcification in rats with adenine-induced uraemia. Nephrol Dial Transplant 21:651–659

    PubMed  Google Scholar 

  33. Finch JL, Tokumoto M, Nakamura H, Yao W, Shahnazari M, Lane N, Slatopolsky E (2010) Effect of paricalcitol and cinacalcet on serum phosphate, FGF-23, and bone in rats with chronic kidney disease. Am J Physiol Renal Physiol 298:F1315–F1322

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nikolov I, Joki N, Nguyen-Khoa T, Ivanovski O, Phan O, Lacour B, Drüeke TB, Massy ZA, Dos Reis LM, Jorgetti V, Lafage-Proust MH (2010) Chronic kidney disease bone and mineral disorder (CKD–MBD) in apolipoprotein E-deficient mice with chronic renal failure. Bone 47:156–163

    CAS  PubMed  Google Scholar 

  35. Komaba H, Kaludjerovic J, Hu D, Nagano K, Amano K, Ide N, Sato T, Densmore MJ, Hanai JI, Olauson H, Bellido T, Larsson TE, Baron R, Lanske B (2017) Klotho expression in osteocytes regulates bone metabolism and controls bone formation. Kidney Int 92:599–611

    CAS  PubMed  Google Scholar 

  36. Koch F, Merkel C, Ziebart T, Smeets R, Walter C, Al-Nawas B (2012) Influence of bisphosphonates on the osteoblast RANKL and OPG gene expression in vitro. Clin Oral Invest 16:79–86

    Google Scholar 

  37. Lindergard B, Johnell O, Nilsson BE, Wiklund PE (1985) Studies of bone morphology, bone densitometry and laboratory data in patients on maintenance hemodialysis treatment. Nephron 39:122–129

    CAS  PubMed  Google Scholar 

  38. Nickolas T, Stein E, Dworakowski E, Nishiyama KK, Komandah-Kosseh M, Zhang CA, McMahon DJ, Liu XS, Boutroy S, Cremers S, Shane E (2013) Rapid cortical bone loss in patients with chronic kidney disease. J Bone Miner Res 28:1811–1820

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lotinun S, Sibonga JD, Turner RT (2005) Evidence that the cells responsible for marrow fibrosis in a rat model for hyperparathyroidism are preosteoblasts. Endocrinology 146:4074–4081

    CAS  PubMed  Google Scholar 

  40. Hruska KA, Saab G, Mathew S, Lund R (2007) Renal osteodystrophy, phosphate homeostasis, and vascular calcification. Semin Dial 20:309–315

    PubMed  Google Scholar 

  41. Bikle DD, Morey-Holton ER, Doty SB, Currier PA, Tanner SJ, Halloran BP (1994) Alendronate increases skeletal mass of growing rats during unloading by inhibiting resorption of calcified cartilage. J Bone Miner Res 9:1777–1787

    CAS  PubMed  Google Scholar 

  42. Iwata K, Li J, Follet H, Phipps RJ, Burr DB (2006) Bisphosphonates suppress periosteal osteoblast activity independently of resorption in rat femur and tibia. Bone 39:1053–1058

    CAS  PubMed  Google Scholar 

  43. Tsuboi K, Hasegawa T, Yamamoto T, Sasaki M, Hongo H, de Freitas PH, Shimizu T, Takahata M, Oda K, Michigami T, Li M, Kitagawa Y, Amizuka N (2016) Effects of drug discontinuation after short-term daily alendronate administration on osteoblasts and osteocytes in mice. Histochem Cell Biol 146:337–350

    CAS  PubMed  Google Scholar 

  44. Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, Spelsberg TC (2000) Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res 60:6001–6007

    CAS  PubMed  Google Scholar 

  45. Im GI, Qureshi SA, Kenney J, Rubash HE, Shanbhag AS (2004) Osteoblast proliferation and maturation by bisphosphonates. Biomaterials 25:4105–4115

    CAS  PubMed  Google Scholar 

  46. Papapoulos SE, Harinck HI, Bijvoet OL, Gleed JH, Fraher LJ, O'Riordan JL (1986) Effects of decreasing serum calcium on circulating parathyroid hormone and vitamin D metabolites in normocalcaemic and hypercalcaemic patients treated with APD. Bone Miner 1:69–78

    CAS  PubMed  Google Scholar 

  47. Adami S, Frijlink WB, Bijvoet OL, O'Riordan JL, Clemens TL, Papapoulos SE (1982) Regulation of calcium absorption by 1,25-dihydroxy-vitamin D: studies of the effects of a bisphosphonate treatment. Calcif Tissue Int 34:317–320

    CAS  PubMed  Google Scholar 

  48. Faul C, Amaral A, Oskouei B, Hu MC, Sloan A et al (2011) FGF23 induces left ventricular hypertrophy. J Clin Invest 121:4393–4408

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Singh S, Grabner A, Yanucil C, Schramm K, Czaya B, Krick S, Czaja MJ, Bartz R, Abraham R, Di Marco GS, Brand M, Wolf M, Faul C (2016) Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int 90:985–996

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rossaint J, Oehmichen J, Van Aken H, Reuter S, Pavenstädt HJ, Meersch M, Unruh M, Zarbock A (2016) FGF23 signaling impairs neutrophil recruitment and host defense during CKD. J Clin Invest 126:962–974

    PubMed  PubMed Central  Google Scholar 

  51. Mitchell DY, St Peter JV, Eusebio RA, Pallone KA, Kelly SC, Russell DA, Nesbitt JD, Thompson GA, Powell JH (2000) Effect of renal function on risedronate pharmacokinetics after a single oral dose. Br J Clin Pharmacol 49:215–222

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Allen M, Aref M (2017) What animal models have taught us about the safety and efficacy of bisphosphonates in chronic kidney disease. Curr Osteoporos Rep 15:171–177

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant from EA Pharma Co., Ltd. We thank Ms. Chigusa Ishioka for her excellent technical assistance. We are also grateful to Ms. Sachie Tanaka and Mr. Shuho Hori, the Support Center for Medical Research and Education, Tokai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotaka Komaba.

Ethics declarations

Conflict of interest

Dr. Komaba has received honoraria, consulting fees, and/or grant support from Bayer Yakuhin, Chugai Pharmaceutical, Japan Tobacco, Kyowa Kirin, Novartis, and Ono Pharmaceutical. Dr. Wada has received honoraria, consulting fees, and/or grant support from Chugai Pharmaceutical, Daiichi Sankyo, Kyowa Kirin, and Otsuka Pharmaceutical. Dr. Nakamura received grant support from Astellas Pharma and Novartis. Dr. Fukagawa has received honoraria, consulting fees, and/or grant support from Astellas Pharma, Bayer Yakuhin, EA Pharma Co., Ltd., Kissei Pharmaceutical, Kyowa Kirin, Ono Pharmaceutical, and Torii Pharmaceutical. The remaining authors declare no competing interests.

Ethical approval

All experiments were approved by the Institutional Review Board of Tokai University School of Medicine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishida, H., Komaba, H., Hamano, N. et al. Skeletal and mineral metabolic effects of risedronate in a rat model of high-turnover renal osteodystrophy. J Bone Miner Metab 38, 501–510 (2020). https://doi.org/10.1007/s00774-020-01095-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-020-01095-0

Keywords

Navigation