Skip to main content

Advertisement

Log in

MnTBAP inhibits bone loss in ovariectomized rats by reducing mitochondrial oxidative stress in osteoblasts

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The development of postmenopausal osteoporosis is thought to be closely related to oxidative stress. Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), a novel superoxide dismutase (SOD) mimetic, could protect osteoblasts from cytotoxicity and dysfunction caused by oxidative stress. However, it is still unclear whether MnTBAP has effect on the development of postmenopausal osteoporosis. Here, we demonstrated that MnTBAP can inhibit bone mass loss and bone microarchitecture alteration, and increase the number of osteoblasts while reducing osteoclasts number, as well as improve the BMP-2 expression level in ovariectomized rat model. Additionally, MnTBAP can also prevent oxidative stress status up-regulation induced by ovariotomy and hydrogen peroxide (H2O2). Furthermore, MnTBAP reduced the effect of oxidative stress on osteoblasts differentiation and increased BMP-2 expression levels with a dose-dependent manner, via reducing the levels of mitochondrial oxidative stress in osteoblasts. Taken together, our findings provide new insights that MnTBAP inhibits bone loss in ovariectomized rats by reducing mitochondrial oxidative stress in osteoblasts, and maybe a potential drug in postmenopausal osteoporosis therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khosla S, Melton LJ 3rd, Riggs BL (2011) The unitary model for estrogen deficiency and the pathogenesis of osteoporosis: is a revision needed? J Bone Miner Res 26:441–451

    CAS  PubMed  Google Scholar 

  2. Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, McCloskey EV, Jönsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Luo D, Ren H, Li T, Lian K, Lin D (2016) Rapamycin reduces severity of senile osteoporosis by activating osteocyte autophagy. Osteoporos Int 27:1093–1101

    CAS  PubMed  Google Scholar 

  4. Luo D, Ren H, Zhang H, Zhang P, Huang Z, Xian H, Lian K, Lin D (2017) The protective effects of triptolide on age-related bone loss in old male rats. Biomed Pharmacother 98:280–285

    PubMed  Google Scholar 

  5. Wauquier F, Leotoing L, Coxam V, Guicheux J, Wittrant Y (2009) Oxidative stress in bone remodelling and disease. Trends Mol Med 15:468–477

    CAS  PubMed  Google Scholar 

  6. Zhou Q, Zhu L, Zhang D, Li N, Li Q, Dai P, Mao Y, Li X, Ma J, Huang S (2016) Oxidative stress-related biomarkers in postmenopausal osteoporosis: a systematic review and meta-analyses. Dis Markers 2016:7067984

    PubMed  PubMed Central  Google Scholar 

  7. Zhang JK, Yang L, Meng GL, Yuan Z, Fan J, Li D, Chen JZ, Shi TY, Hu HM, Wei BY, Luo ZJ, Liu J (2013) Protection by salidroside against bone loss via inhibition of oxidative stress and bone-resorbing mediators. PLoS One 8:e57251

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sendur OF, Turan Y, Tastaban E, Serter M (2009) Antioxidant status in patients with osteoporosis: a controlled study. Joint Bone Spine 76:514–518

    CAS  PubMed  Google Scholar 

  9. Sánchez-Rodríguez MA, Ruiz-Ramos M, Correa-Muñoz E, Mendoza-Núñez VM (2007) Oxidative stress as a risk factor for osteoporosis in elderly Mexicans as characterized by antioxidant enzymes. BMC Musculoskelet Disord 8:124

    PubMed  PubMed Central  Google Scholar 

  10. Cervellati C, Bonaccorsi G, Cremonini E, Bergamini CM, Patella A, Castaldini C, Ferrazzini S, Capatti A, Picarelli V, Pansini FS, Massari L (2013) Bone mass density selectively correlates with serum markers of oxidative damage in post-menopausal women. Clin Chem Lab Med 51:333–338

    CAS  PubMed  Google Scholar 

  11. Manolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31:266–300

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Baek KH, Oh KW, Lee WY, Lee SS, Kim MK, Kwon HS, Rhee EJ, Han JH, Song KH, Cha BY, Lee KW, Kang MI (2010) Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif Tissue Int 87:226–235

    CAS  PubMed  Google Scholar 

  13. Badeau M, Adlercreutz H, Kaihovaara P, Tikkanen MJ (2005) Estrogen A-ring structure and antioxidative effect on lipoproteins. J Steroid Biochem Mol Biol 96:271–278

    CAS  PubMed  Google Scholar 

  14. Amir E, Freedman OC, Seruga B, Evans DG (2010) Assessing women at high risk of breast cancer: a review of risk assessment models. J Natl Cancer Inst 102:680–691

    PubMed  Google Scholar 

  15. Maggio D, Barabani M, Pierandrei M, Polidori MC, Catani M, Mecocci P, Senin U, Pacifici R, Cherubini A (2003) Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab 88:1523–1527

    CAS  PubMed  Google Scholar 

  16. Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, Kousteni S, O’Brien CA, Bellido T, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC (2007) Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 282:27285–27297

    CAS  PubMed  Google Scholar 

  17. Zhang Y, Xu S, Li K, Tan K, Liang K, Wang J, Shen J, Zou W, Hu L, Cai D, Ding C, Li M, Xiao G, Liu B, Liu A, Bai X (2017) mTORC1 inhibits NF-κB/NFATc1 signaling and prevents osteoclast precursor differentiation, in vitro and in mice. J Bone Miner Res 32:1829–1840

    CAS  PubMed  Google Scholar 

  18. Mody N, Parhami F, Sarafian TA, Demer LL (2001) Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 31:509–519

    CAS  PubMed  Google Scholar 

  19. Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM, Luo SQ (2004) Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 314:197–207

    CAS  PubMed  Google Scholar 

  20. Bartell SM, Kim HN, Ambrogini E, Han L, Iyer S, Serra Ucer S, Rabinovitch P, Jilka RL, Weinstein RS, Zhao H, O’Brien CA, Manolagas SC, Almeida M (2014) FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation. Nat Commun 5:3773

    PubMed  Google Scholar 

  21. Callaway DA, Jiang JX (2015) Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab 33:359–370

    CAS  PubMed  Google Scholar 

  22. Tang X, Luo YX, Chen HZ, Liu DP (2014) Mitochondria, endothelial cell function, and vascular diseases. Front Physiol 5:175

    PubMed  PubMed Central  Google Scholar 

  23. Liu D, Shan Y, Valluru L, Bao F (2013) Mn(III) tetrakis (4-benzoic acid) porphyrin scavenges reactive species, reduces oxidative stress, and improves functional recovery after experimental spinal cord injury in rats: comparison with methylprednisolone. BMC Neurosci 14:23

    PubMed  PubMed Central  Google Scholar 

  24. Valluru L, Diao Y, Hachmeister JE, Liu D (2012) Mn (III) tetrakis (4-benzoic acid) porphyrin protects against neuronal and glial oxidative stress and death after spinal cord injury. CNS Neurol Disord: Drug Targets 11:774–790

    CAS  Google Scholar 

  25. Li Y, Shen G, Yu C, Li G, Shen J, Gong J, Xu Y (2014) Angiotensin II induces mitochondrial oxidative stress and mtDNA damage in osteoblasts by inhibiting SIRT1-FoxO3a-MnSOD pathway. Biochem Biophys Res Commun 455:113–118

    CAS  PubMed  Google Scholar 

  26. Li Y, Yu C, Shen G, Li G, Shen J, Xu Y, Gong J (2015) Sirt3-MnSOD axis represses nicotine-induced mitochondrial oxidative stress and mtDNA damage in osteoblasts. Acta Biochim Biophys Sin (Shanghai) 47:306–312

    CAS  Google Scholar 

  27. Miyazono K, Maeda S, Imamura T (2005) BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 16:251–263

    CAS  PubMed  Google Scholar 

  28. Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22:233–241

    CAS  PubMed  Google Scholar 

  29. Sykaras N, Opperman LA (2003) Bone morphogenetic proteins (BMPs): how do they function and what can they offer the clinician? J Oral Sci 45:57–73

    CAS  PubMed  Google Scholar 

  30. Wan M, Cao X (2005) BMP signaling in skeletal development. Biochem Biophys Res Commun 328:651–657

    CAS  PubMed  Google Scholar 

  31. Bilican B, Fiore-Heriche C, Compston A, Allen ND, Chandran S (2008) Induction of Olig2 precursors by FGF involves BMP signalling blockade at the Smad level. PLoS One 3:e2863

    PubMed  PubMed Central  Google Scholar 

  32. Park SB, Park SH, Kim NH, Chung CK (2013) BMP-2 induced early bone formation in spine fusion using rat ovariectomy osteoporosis model. Spine J 13:1273–1280

    PubMed  Google Scholar 

  33. Cakatay U, Aydin S, Yanar K, Uzun H (2010) Gender-dependent variations in systemic biomarkers of oxidative protein, DNA, and lipid damage in aged rats. Aging Male 13:51–58

    CAS  PubMed  Google Scholar 

  34. Martinovic J, Dopsaj V, Dopsaj MJ, Kotur-Stevuljevic J, Vujovic A, Stefanovic A, Nesic G (2009) Long-term effects of oxidative stress in volleyball players. Int J Sports Med 30:851–856

    CAS  PubMed  Google Scholar 

  35. Day BJ, Fridovich I, Crapo JD (1997) Manganic porphyrins possess catalase activity and protect endothelial cells against hydrogen peroxide-mediated injury. Arch Biochem Biophys 347:256–262

    CAS  PubMed  Google Scholar 

  36. Zingarelli B, Day BJ, Crapo JD, Salzman AL, Szabó C (1997) The potential role of peroxynitrite in the vascular contractile and cellular energetic failure in endotoxic shock. Br J Pharmacol 120:259–267

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Day BJ, Batinic-Haberle I, Crapo JD (1999) Metalloporphyrins are potent inhibitors of lipid peroxidation. Free Radic Biol Med 26:730–736

    CAS  PubMed  Google Scholar 

  38. Suresh MV, Yu B, Lakshminrusimha S, Machado-Aranda D, Talarico N, Zeng L, Davidson BA, Pennathur S, Raghavendran K (2013) The protective role of MnTBAP in oxidant-mediated injury and inflammation in a rat model of lung contusion. Surgery 154:980–990

    PubMed  Google Scholar 

  39. Hachmeister JE, Valluru L, Bao F, Liu D (2006) Mn (III) tetrakis (4-benzoic acid) porphyrin administered into the intrathecal space reduces oxidative damage and neuron death after spinal cord injury: a comparison with methylprednisolone. J Neurotrauma 23:1766–1778

    PubMed  Google Scholar 

  40. Yu J, Mao S, Zhang Y, Gong W, Jia Z, Huang S, Zhang A (2016) MnTBAP Therapy Attenuates Renal Fibrosis in Mice with 5/6 Nephrectomy. Oxid Med Cell Longev 2016:7496930

    PubMed  PubMed Central  Google Scholar 

  41. Venkatadri R, Iyer AK, Ramesh V, Wright C, Castro CA, Yakisich JS, Azad N (2017) MnTBAP inhibits bleomycin-induced pulmonary fibrosis by regulating VEGF and Wnt signaling. J Cell Physiol 232:506–516

    CAS  PubMed  Google Scholar 

  42. Malassagne B, Ferret PJ, Hammoud R, Tulliez M, Bedda S, Trébéden H, Jaffray P, Calmus Y, Weill B, Batteux F (2001) The superoxide dismutase mimetic MnTBAP prevents Fas-induced acute liver failure in the mouse. Gastroenterology 121:1451–1459

    CAS  PubMed  Google Scholar 

  43. Pires KM, Ilkun O, Valente M, Boudina S (2014) Treatment with a SOD mimetic reduces visceral adiposity, adipocyte death, and adipose tissue inflammation in high fat-fed mice. Obesity (Silver Spring) 22:178–187

    CAS  Google Scholar 

  44. Jamaluddin MS, Lin PH, Yao Q, Chen C (2010) Non-nucleoside reverse transcriptase inhibitor efavirenz increases monolayer permeability of human coronary artery endothelial cells. Atherosclerosis 208:104–111

    CAS  PubMed  Google Scholar 

  45. Cui YY, Qian JM, Yao AH, Ma ZY, Qian XF, Zha XM, Zhao Y, Ding Q, Zhao J, Wang S, Wu J (2012) SOD mimetic improves the function, growth, and survival of small-size liver grafts after transplantation in rats. Transplantation 94:687–694

    PubMed  PubMed Central  Google Scholar 

  46. Yao D, Brownlee M (2010) Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes 59:249–255

    CAS  PubMed  Google Scholar 

  47. Yang YH, Li B, Zheng XF, Chen JW, Chen K, Jiang SD, Jiang LS (2014) Oxidative damage to osteoblasts can be alleviated by early autophagy through the endoplasmic reticulum stress pathway-implications for the treatment of osteoporosis. Free Radic Biol Med 77:10–20

    CAS  PubMed  Google Scholar 

  48. She F, Wang W, Wang Y, Tang P, Wei J, Chen H, Zhang B (2014) Melatonin protects MG63 osteoblast-like cells from hydrogen peroxide-induced cytotoxicity by maintaining mitochondrial function. Mol Med Rep 9:493–498

    CAS  PubMed  Google Scholar 

  49. Bartolomé A, López-Herradón A, Portal-Núñez S, García-Aguilar A, Esbrit P, Benito M, Guillén C (2013) Autophagy impairment aggravates the inhibitory effects of high glucose on osteoblast viability and function. Biochem J 455:329–337

    PubMed  Google Scholar 

  50. Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, Luu HH, An N, Breyer B, Vanichakarn P, Szatkowski JP, Park JY, He TC (2003) Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am 85-a:1544–1552

    Google Scholar 

  51. Chen D, Harris MA, Rossini G, Dunstan CR, Dallas SL, Feng JQ, Mundy GR, Harris SE (1997) Bone morphogenetic protein 2 (BMP-2) enhances BMP-3, BMP-4, and bone cell differentiation marker gene expression during the induction of mineralized bone matrix formation in cultures of fetal rat calvarial osteoblasts. Calcif Tissue Int 60:283–290

    CAS  PubMed  Google Scholar 

  52. Katagiri T, Watabe T (2016) Bone morphogenetic proteins. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a021899

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

DSL acknowledges the National Natural Science Foundation of China (Grant No. 81600696).

Author information

Authors and Affiliations

Authors

Contributions

Study design: XCC, KJL and DSL. Study conduct: XCC, DQL, TL, ZXH, WTZ and LW. Data analysis: XCC, DQL, TL. Drafting manuscript: XCC and DSL. Approving final version of manuscript: XCC, KJL and DSL. DSL takes responsibility for the integrity of the data analysis.

Corresponding authors

Correspondence to Kejian Lian or Dasheng Lin.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest.

Ethical approval

All procedures were approved by the Animal Care and Use Committee at Xiamen University.

Informed consent

This study does not involve human participants and therefore does not require informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Luo, D., Li, T. et al. MnTBAP inhibits bone loss in ovariectomized rats by reducing mitochondrial oxidative stress in osteoblasts. J Bone Miner Metab 38, 27–37 (2020). https://doi.org/10.1007/s00774-019-01038-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-019-01038-4

Keywords

Navigation