Skip to main content

Advertisement

Log in

Modulation of bone turnover by Cissus quadrangularis after ovariectomy in rats

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

In women, age-related bone loss is associated with increased risk of bone fracture. Existing therapies are associated with severe side effects; thus, there is a need to find alternative medicines with less or optimal side effects. Cissus quadrangularis (CQ), an Ayurvedic medicine used to enhance fracture healing, was tested for its bone protective properties and studied to discern the mechanism by which it is beneficial to bone. Female Sprague Dawley rats were either sham operated or ovariectomized and were fed CQ for 3 months. Several biochemical markers, cytokines and hormones were assayed. Femur, tibia and lumbar vertebrae were subjected to pQCT and µCT densitometry. MC3T3 cells were cultured, treated with CQ and used to analyze miRNA content and subjected to qPCR for gene expression analysis related to bone metabolism. CQO rats showed protected bone mass and microarchitecture of trabecular bone in the distal femoral metaphysis and the proximal tibial metaphysis. The lumbar vertebrae, however, showed no significant changes. Serum protein expression levels of P1NP increased and Trap5b and CTX levels decreased with in vivo CQ treatment. Some influence on the anti- and pro-inflammatory markers was also observed. Significantly high level of estradiol in the CQO rats was observed. In vitro expression of a few genes related to bone metabolism showed that osteocalcin increased significantly. The other genes—collagen I expression, SPP1, BMP2, DCAT1—decreased significantly. Certain miRNA that regulate bone turnover using the BMP pathway and Wnt signaling pathways were upregulated by CQ. qPCR after acute treatment with CQ showed significantly increased levels of osteocalcin and decreased levels of Wnt/β catenin antagonist DCAT1. Overall, CQ protected the microarchitecture of the long bones from ovariectomy-induced bone loss. This may be because of decreased inflammation and modulation through the BMP and Wnt signaling pathways. We conclude that CQ is a potential therapeutic agent to treat postmenopausal osteoporosis with no side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McGarry KA, Kiel DP (2000) Postmenopausal osteoporosis. Strategies for preventing bone loss, avoiding fracture. Postgrad Med 108:79–82 (85–78, 91)

  2. Riggs BL, Khosla S, Melton LJ 3rd (1998) A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 13:763–773

    Article  CAS  PubMed  Google Scholar 

  3. Banu J, Fernandes G (2013) Animal models of menopausal metabolism. In: Martin CJH (ed) Handbook of nutrition and diet in menopause: Springer, Berlin

  4. National Osteoporosis Foundation. Types of osteoporosis medications. http://nof.org/articles/22. Accessed 04 Jan 2016

  5. Blick SK, Dhillon S, Keam SJ (2008) Teriparatide: a review of its use in osteoporosis. Drugs 68:2709–2737

    Article  CAS  PubMed  Google Scholar 

  6. Rizzoli R, Reginster JY, Boonen S, Breart G, Diez-Perez A et al (2011) Adverse reactions and drug-drug interactions in the management of women with postmenopausal osteoporosis. Calcif Tissue Int 89:91–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rubin MR, Bilezikian JP (2005) Parathyroid hormone as an anabolic skeletal therapy. Drugs 65:2481–2498

    Article  CAS  PubMed  Google Scholar 

  8. NBJ (2000) Herbal and botanical US consumer sale 1999. California Nutr Bus J 2000:1–3

    Google Scholar 

  9. Bent S, Ko R (2004) Commonly used herbal medicines in the United States: a review. Am J Med 116:478–485

    Article  PubMed  Google Scholar 

  10. Major herbs of Ayurveda (2002) In: Williamson EM (ed) Elsevier Sciences, London

  11. Singh LM, Udupa KN (1962) Studies on "Cissus Quadrangularis" in fracture by using phosphorus 32 III. Indian J Med Sci 16:926–931

    CAS  PubMed  Google Scholar 

  12. Udupa KN, Arnikar HJ, Singh LM (1961) Experimental studies of the use of ‘Cissus quadrangularis’ in healing of fractures II. Indian J Med Sci 15:551–557

    CAS  PubMed  Google Scholar 

  13. Potu BK, Rao MS, Nampurath GK, Chamallamudi MR, Prasad K et al (2009) Evidence-based assessment of antiosteoporotic activity of petroleum-ether extract of Cissus quadrangularis Linn. on ovariectomy-induced osteoporosis. Ups J Med Sci 114:140–148

  14. Potu BK, Bhat KM, Rao MS, Nampurath GK, Chamallamudi MR et al (2009) Petroleum ether extract of Cissus quadrangularis (Linn.) enhances bone marrow mesenchymal stem cell proliferation and facilitates osteoblastogenesis. Clinics (Sao Paulo) 64:993–998

    Article  Google Scholar 

  15. Muthusami S, Senthilkumar K, Vignesh C, Ilangovan R, Stanley J et al (2011) Effects of Cissus quadrangularis on the proliferation, differentiation and matrix mineralization of human osteoblast like SaOS-2 cells. J Cell Biochem 112:1035–1045

    Article  CAS  PubMed  Google Scholar 

  16. Jainu M, Devi CS (2006) Gastroprotective action of Cissus quadrangularis extract against NSAID induced gastric ulcer: role of proinflammatory cytokines and oxidative damage. Chem Biol Interact 161:262–270

    Article  CAS  PubMed  Google Scholar 

  17. Debreczeni DE, Ruiz-Ruiz S, Aramburu J, Lopez C, Belliure B et al (2011) Detection, discrimination and absolute quantitation of Tomato spotted wilt virus isolates using real time RT-PCR with TaqMan((R))MGB probes. J Virol Methods 176:32–37

    Article  CAS  PubMed  Google Scholar 

  18. Das K, Saikolappan S, Dhandayuthapani S (2013) Differential expression of miRNAs by macrophages infected with virulent and avirulent Mycobacterium tuberculosis. Tuberculosis (Edinb) 93(Suppl):S47–50

    Article  CAS  Google Scholar 

  19. Zhu Q, Hong A, Sheng N, Zhang X, Matejko A et al (2007) microParaflo biochip for nucleic acid and protein analysis. Methods Mol Biol 382:287–312

    Article  CAS  PubMed  Google Scholar 

  20. Schepeler T, Holm A, Halvey P, Nordentoft I, Lamy P et al (2012) Attenuation of the beta-catenin/TCF4 complex in colorectal cancer cells induces several growth-suppressive microRNAs that target cancer promoting genes. Oncogene 31:2750–2760

    Article  CAS  PubMed  Google Scholar 

  21. Hair JFBW, Babin BJ, Anderson RE (2010) Multivariate data analysis. Prentice Hall Pearson, Upper Saddle River

    Google Scholar 

  22. LS TBaF (2013) Using multivariate statistics. Allyn & Bacon, Boston

    Google Scholar 

  23. Mertler CARR (2017) Advanced and multivariate statistical methods: Practical application and interpretation. Routledge, New York

    Google Scholar 

  24. Meyers LSGG, Guarino AJ (2017) Applied multivariate research: design and interpretation. SAGE Publications Ltd, Thousand Oaks

    Google Scholar 

  25. Banu J, Varela E, Bahadur AN, Soomro R, Kazi N et al (2012) Inhibition of Bone Loss by Cissus quadrangularis in Mice: a Preliminary Report. J Osteoporos 2012:101206

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jainu MV, K K (2010) Cissus quadrangularis L. extract attenuates chronic ulcer by possible involvement of polyamiones and proliferating cell nuclear antigen. Pharmacogn Mag 6:225–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aswar UM, Mohan V, Bodhankar SL (2012) Antiosteoporotic activity of phytoestrogen-rich fraction separated from ethanol extract of aerial parts of Cissus quadrangularis in ovariectomized rats. Indian J Pharmacol 44:345–350

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nagani KV, Kevalia J, Chandra SV (2011) Pharmacological and phytochemical evaluation of stem of Cissus quadrangualris L. Int J Pharm Sc Res 2:2856–2862

    Google Scholar 

  29. Austin A. K, R., Jegadeesan M. (2004) Pharmacological Studies on Cissus quadrangualris L Variant I and II. Anc Sci Life XXIII: 33–47.

  30. Udayakumar R, Sundaran M, Krishna R (2004) Mineral and biochemical analysis of various parts of Cissus quadrangularis linn. Anc Sci Life 24:79–82

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Srivastava AK, Srivasta P, Behera BR, Shrivastava AK (2011) Pharmacological and Phyto-chemical Investigation of Cissus quadrangularis Linn Stem. Int J Pharn Res Dev 3:207–215

    Google Scholar 

  32. Gupta MMAVRK (1990) Lipid constituents of Cissus quadrangularis. Phytochemistry 30:875–878

    Article  Google Scholar 

  33. Adesanya SA, Nia R, Martin M-T, Boukamcha N, Montagnac A, Pais M (1999) Stilbene derivatives for Cissus quadrangularis. J Nat Prod 62:1694

    Article  CAS  Google Scholar 

  34. Singh G, Rawat P, Maurya R (2007) Constituents of Cissus quadrangularis. Nat Prod Res 21:522–528

    Article  CAS  PubMed  Google Scholar 

  35. Bhutani KK, Kapoor R, Atal CK (1984) Two unsymmettric tetracyclic triterpenoids from Cissus quadrangualris. Phytochemistry 23:407–410

    Article  CAS  Google Scholar 

  36. Sharma U, Pal D, Prasad R (2014) Alkaline phosphatase: an overview. Indian J Clin Biochem 29:269–278

    Article  CAS  PubMed  Google Scholar 

  37. Fratzl P, Paris O, Klaushofer K, Landis WJ (1996) Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle X-ray scattering. J Clin Invest 97:396–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hauschka PV, Wians Jr FH (1989) Osteocalcin-hydroxyapatite interaction in the extracellular organic matrix of bone. Anat Rec 224:180–188

  39. Lombardi G, Perego S, Luzi L, Banfi G (2015) A four-season molecule: osteocalcin Updates in its physiological roles. Endocrine 48:394–404

    Article  CAS  PubMed  Google Scholar 

  40. Wei J, Karsenty G (2015) An overview of the metabolic functions of osteocalcin. Curr Osteoporos Rep 13:180–185

    Article  PubMed  Google Scholar 

  41. Montero M, Diaz-Curiel M, Guede D, Caeiro JR, Martin-Fernandez M et al (2012) Effects of kalsis, a dietary supplement, on bone metabolism in the ovariectomized rats. J Osteoporos 2012:639427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mundy GR (2007) Osteoporosis and inflammation. Nutr Rev 65:S147–S151

    Article  PubMed  Google Scholar 

  43. Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E et al (1990) IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 145:3297–3303

    CAS  PubMed  Google Scholar 

  44. Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC et al (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257:88–91

    Article  CAS  PubMed  Google Scholar 

  45. Poli V, Balena R, Fattori E, Markatos A, Yamamoto M et al (1994) Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J 13:1189–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Boyle RA, Lenton TM (2006) Fluctuation in the physical environment as a mechanism for reinforcing evolutionary transitions. J Theor Biol 242:832–843

    Article  PubMed  Google Scholar 

  47. Panthong A, Supraditaporn W, Kanjanapothi D, Taesotikul T, Reutrakul V (2007) Analgesic, anti-inflammatory and venotonic effects of Cissus quadrangularis Linn. J Ethnopharmacol 110:264–270

    Article  PubMed  Google Scholar 

  48. Bhujade AM, Talmale S, Kumar N, Gupta G, Reddanna P et al (2012) Evaluation of Cissus quadrangularis extracts as an inhibitor of COX, 5-LOX, and proinflammatory mediators. J Ethnopharmacol 141:989–996

    Article  PubMed  Google Scholar 

  49. Aswar UM, Bhaskaran S, Mohan V, Bodhankar SL (2010) Estrogenic activity of friedelin rich fraction (IND-HE) separated from Cissus quadrangularis and its effect on female sexual function. Pharmacognosy Res 2:138–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grady D, Rubin SM, Petitti DB, Fox CS, Black D et al (1992) Hormone therapy to prevent disease and prolong life in postmenopausal women. Ann Intern Med 117:1016–1037

    Article  CAS  PubMed  Google Scholar 

  51. Quigley MTM, Burnier PL, P AM (1987) Estrogen therapy arrests bone loss in elderly women. Am J Ob Gyn 156:1516–1523

    Article  CAS  Google Scholar 

  52. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C et al (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA 288:321–333

    Article  CAS  PubMed  Google Scholar 

  53. Torgerson DJ, Bell-Syer SE (2001) Hormone replacement therapy and prevention of nonvertebral fractures: a meta-analysis of randomized trials. JAMA 285:2891–2897

    Article  CAS  PubMed  Google Scholar 

  54. Casabiell X, Pineiro V, Peino R, Lage M, Camina J et al (1998) Gender differences in both spontaneous and stimulated leptin secretion by human omental adipose tissue in vitro: dexamethasone and estradiol stimulate leptin release in women, but not in men. J Clin Endocrinol Metab 83:2149–2155

    CAS  PubMed  Google Scholar 

  55. Chu SC, Chou YC, Liu JY, Chen CH, Shyu JC et al (1999) Fluctuation of serum leptin level in rats after ovariectomy and the influence of estrogen supplement. Life Sci 64:2299–2306

    Article  CAS  PubMed  Google Scholar 

  56. Hauser G, Hauser R (1981) Infant botulism—a "New" disease. Harefuah 100:438–440

    CAS  PubMed  Google Scholar 

  57. Gimble JM, Nuttall ME (2012) The relationship between adipose tissue and bone metabolism. Clin Biochem 45:874–879

    Article  CAS  PubMed  Google Scholar 

  58. Combs TP, Marliss EB (2014) Adiponectin signaling in the liver. Rev Endocr Metab Disord 15:137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Naot D, Musson DS, Cornish J (2017) The activity of adiponectin in bone. Calcif Tissue Int 100:486–499

    Article  CAS  PubMed  Google Scholar 

  60. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Yano S et al (2009) Relationships between serum adiponectin levels versus bone mineral density, bone metabolic markers, and vertebral fractures in type 2 diabetes mellitus. Eur J Endocrinol 160:265–273

    Article  CAS  PubMed  Google Scholar 

  61. Araneta MR, von Muhlen D, Barrett-Connor E (2009) Sex differences in the association between adiponectin and BMD, bone loss, and fractures: the Rancho Bernardo study. J Bone Miner Res 24:2016–2022

    Article  PubMed  PubMed Central  Google Scholar 

  62. Abbott MJ, Roth TM, Ho L, Wang L, O'Carroll D et al (2015) Negative skeletal effects of locally produced adiponectin. PLoS One 10:e0134290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cheyette BN, Waxman JS, Miller JR, Takemaru K, Sheldahl LC et al (2002) Dapper, a Dishevelled-associated antagonist of beta-catenin and JNK signaling, is required for notochord formation. Dev Cell 2:449–461

    Article  CAS  PubMed  Google Scholar 

  64. Zhang L, Gao X, Wen J, Ning Y, Chen YG (2006) Dapper 1 antagonizes Wnt signaling by promoting dishevelled degradation. J Biol Chem 281:8607–8612

    Article  CAS  PubMed  Google Scholar 

  65. Kothari SC, Shivarudraiah P, Venkataramaiah SB, Koppolu KP, Gavara S et al (2011) Safety assessment of Cissus quadrangularis extract (CQR-300): subchronic toxicity and mutagenicity studies. Food Chem Toxicol 49:3343–3357

    Article  CAS  PubMed  Google Scholar 

  66. Stohs SJ, Ray SD (2013) A review and evaluation of the efficacy and safety of Cissus quadrangularis extracts. Phytother Res 27:1107–1114

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Ms. Erika Varela, Mr. Eberto Presas for helping with the surgeries, feeding and weighing the rats regularly and Mr. Ali N Bahadur for doing some of the μCT scanning. This research did not receive any specific grant from funding agencies in the public, commercial, or non-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jameela Banu.

Ethics declarations

Conflict of interest

The authors have no disclosures to declare.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerra, J.M., Hanes, M.A., Rasa, C. et al. Modulation of bone turnover by Cissus quadrangularis after ovariectomy in rats. J Bone Miner Metab 37, 780–795 (2019). https://doi.org/10.1007/s00774-018-0983-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-018-0983-3

Keywords

Navigation