Skip to main content

Advertisement

Log in

Increased risk of fractures in patients with polycystic ovary syndrome: a nationwide population-based retrospective cohort study

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is a complex disorder; various features of this disorder may influence bone metabolism and skeletal mass. The contribution of PCOS to lower bone mineral density has been recognized. However, the impact of PCOS on the long-term risks for fractures remains inconclusive. The aim of this study was to determine the risk of overall fracture and fractures at different anatomic sites in patients with PCOS. Using a nationwide health insurance claims database, we included 11,106 subjects, aged 15–80 years, with newly diagnosed PCOS (ICD-9-CM: 254.4X) during 2000–2012. Patients with PCOS and respective age-matched (1:4) controls without PCOS were enrolled. The occurrence of fracture was monitored until the end of 2013. Cox regression and computed hazard ratios (HR) with 95% confidence intervals (95% CI) were used to determine the risk of PCOS among women with fractures. The PCOS and non-PCOS groups were comprised of 11,106 patients with PCOS and 44,424 participants without PCOS, respectively. Patients with PCOS had a higher incidence of any fractures compared with non-PCOS group (10.16 versus 8.07 per 1000 person-years) and a greater risk of any fractures [adjusted hazard ratio (aHR) = 1.23, 95% CI = 1.13–1.33], osteoporotic fractures (aHR = 1.33, 95% CI = 1.15–1.54), spine fractures (aHR = 1.36, 95% CI = 1.11–1.66) and forearm fractures (aHR = 1.39, 95% CI = 1.07–1.80), but the risk for femur or hip fracture, humerus, wrist and non-osteoporotic fractures were not increased. In conclusion, the PCOS group had a higher occurrence rate of fractures than the non-PCOS group. These results provide evidence for the adverse effects of PCOS on the risk of fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Li R, Zhang Q, Yang D, Li S, Lu S, Wu X, Wei Z, Song X, Wang X, Fu S, Lin J, Zhu Y, Jiang Y, Feng HL, Qiao J (2013) Prevalence of polycystic ovary syndrome in women in China: a large community-based study. Hum Reprod 28:2562–2569

    Article  Google Scholar 

  2. Ehrmann DA (2005) Polycystic ovary syndrome. N Engl J Med 352:1223–1236

    Article  CAS  Google Scholar 

  3. March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ, Davies MJ (2010) The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod 25:544–551

    Article  Google Scholar 

  4. Sirmans SM, Pate KA (2013) Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin Epidemiol 6:1–13

    Article  Google Scholar 

  5. Glintborg D, Andersen M (2010) An update on the pathogenesis, inflammation, and metabolism in hirsutism and polycystic ovary syndrome. Gynecol Endocrinol 26:281–296

    Article  CAS  Google Scholar 

  6. Berberoglu Z (2015) Insight into bone metabolism and skeletal mass in polycystic ovary syndrome. EMJ Repro Health 1:46–53

    Google Scholar 

  7. Teede H, Deeks A, Moran L (2010) Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med 8:41

    Article  CAS  Google Scholar 

  8. Krishnan A, Muthusami S (2017) Hormonal alterations in PCOS and its influence on bone metabolism. J Endocrinol 232:R99–R113

    Article  CAS  Google Scholar 

  9. Dorte Glintborg APH, Andersen Marianne (2013) Bone mineral density and vitamin D in PCOS and hirsutism. Expert Rev Endocrinol Meta 8:449–459

    Article  Google Scholar 

  10. Karadag C, Yoldemir T, Gogas Yavuz D (2017) Determinants of low bone mineral density in premenopausal polycystic ovary syndrome patients. Gynecol Endocrinol 33:234–237

    Article  CAS  Google Scholar 

  11. Adami S, Zamberlan N, Castello R, Tosi F, Gatti D, Moghetti P (1998) Effect of hyperandrogenism and menstrual cycle abnormalities on bone mass and bone turnover in young women. Clin Endocrinol 48:169–173

    Article  CAS  Google Scholar 

  12. Yuksel O, Dokmetas HS, Topcu S, Erselcan T, Sencan M (2001) Relationship between bone mineral density and insulin resistance in polycystic ovary syndrome. J Bone Miner Metab 19:257–262

    Article  CAS  Google Scholar 

  13. Kirchengast S, Huber J (2001) Body composition characteristics and body fat distribution in lean women with polycystic ovary syndrome. Hum Reprod 16:1255–1260

    Article  CAS  Google Scholar 

  14. Moran LJ, Thomson RL, Buckley JD, Noakes M, Clifton PM, Norman RJ, Brinkworth GD (2015) Steroidal contraceptive use is associated with lower bone mineral density in polycystic ovary syndrome. Endocrine 50:811–815

    Article  CAS  Google Scholar 

  15. Katulski K, Slawek S, Czyzyk A, Podfigurna-Stopa A, Paczkowska K, Ignaszak N, Podkowa N, Meczekalski B (2014) Bone mineral density in women with polycystic ovary syndrome. J Endocrinol Invest 37:1219–1224

    Article  CAS  Google Scholar 

  16. Rubin KH, Glintborg D, Nybo M, Andersen M, Abrahamsen B (2016) Fracture risk is decreased in women with polycystic ovary syndrome: a register-based and population-based cohort study. J Bone Miner Res 31:709–717

    Article  CAS  Google Scholar 

  17. Schmidt J, Dahlgren E, Brannstrom M, Landin-Wilhelmsen K (2012) Body composition, bone mineral density and fractures in late postmenopausal women with polycystic ovary syndrome—a long-term follow-up study. Clin Endocrinol 77:207–214

    Article  CAS  Google Scholar 

  18. National Health Insurance Research Database. Available at: https://nhird.nhri.org.tw/en/. Accessed 1 Jan 2017

  19. Pan ML, Chen LR, Tsao HM, Chen KH (2015) Relationship between polycystic ovarian syndrome and subsequent gestational diabetes mellitus: a nationwide population-based study. PLoS One 10:e0140544

    Article  Google Scholar 

  20. Kanis JA, Hans D, Cooper C, Baim S, Bilezikian JP et al (2011) Interpretation and use of FRAX in clinical practice. Osteoporos Int 22:2395–2411

    Article  CAS  Google Scholar 

  21. Lai SW, Liao KF, Lai HC, Tsai PY, Lin CL, Chen PC, Sung FC (2013) Risk of major osteoporotic fracture after cardiovascular disease: a population-based cohort study in Taiwan. J Epidemiol 23:109–114

    Article  Google Scholar 

  22. Wallace WH, Kelsey TW (2004) Ovarian reserve and reproductive age may be determined from measurement of ovarian volume by transvaginal sonography. Hum Reprod 19:1612–1617

    Article  Google Scholar 

  23. Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40:373–383

    Article  CAS  Google Scholar 

  24. Kassanos D, Trakakis E, Baltas CS, Papakonstantinou O, Simeonidis G, Salamalekis G, Grammatikakis I, Basios G, Labos G, Skarantavos G, Balanika A (2010) Augmentation of cortical bone mineral density in women with polycystic ovary syndrome: a peripheral quantitative computed tomography (pQCT) study. Hum Reprod 25:2107–2114

    Article  CAS  Google Scholar 

  25. Khosla S, Riggs BL, Robb RA, Camp JJ, Achenbach SJ, Oberg AL, Rouleau PA, Melton LJ 3rd (2005) Relationship of volumetric bone density and structural parameters at different skeletal sites to sex steroid levels in women. J Clin Endocr Metab 90:5096–5103

    Article  CAS  Google Scholar 

  26. Prior JC, Vigna YM, Schechter MT, Burgess AE (1990) Spinal bone loss and ovulatory disturbances. N Engl J Med 323:1221–1227

    Article  CAS  Google Scholar 

  27. Seifert-Klauss V, Prior JC (2010) Progesterone and bone: actions promoting bone health in women. J Osteoporos 2010:845180

    Article  Google Scholar 

  28. Wehr E, Pilz S, Schweighofer N, Giuliani A, Kopera D, Pieber TR, Obermayer-Pietsch B (2009) Association of hypovitaminosis D with metabolic disturbances in polycystic ovary syndrome. Eur J Endocrinol 161:575–582

    Article  CAS  Google Scholar 

  29. Krul-Poel YH, Snackey C, Louwers Y, Lips P, Lambalk CB, Laven JS, Simsek S (2013) The role of vitamin D in metabolic disturbances in polycystic ovary syndrome: a systematic review. Eur J Endocrinol 169:853–865

    Article  CAS  Google Scholar 

  30. Muscogiuri GMJ, Mathieu C, Badenhoop K, Tamer G, Orio F, Vieth R, Mezza T, Colao A, Pittas A (2014) Vitamin D as a potential contributor in endocrine health 612 and disease. Eur J Endocrinol 171:R101–R110

    Article  CAS  Google Scholar 

  31. Thomson RL, Spedding S, Buckley JD (2012) Vitamin D in the aetiology and management of polycystic ovary syndrome. Clin Endocrinol 77:343–350

    Article  CAS  Google Scholar 

  32. Carmina E, Lobo RA (2004) Use of fasting blood to assess the prevalence of insulin resistance in women with polycystic ovary syndrome. Fertil Steril 82:661–665

    Article  Google Scholar 

  33. Schachter M, Raziel A, Friedler S, Strassburger D, Bern O, Ron-El R (2003) Insulin resistance in patients with polycystic ovary syndrome is associated with elevated plasma homocysteine. Hum Reprod 18:721–727

    Article  CAS  Google Scholar 

  34. Moran LJ, Misso ML, Wild RA, Norman RJ (2010) Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Updat 16:347–363

    Article  CAS  Google Scholar 

  35. Legro RS, Kunselman AR, Dodson WC, Dunaif A (1999) Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J Clin Endocr Metab 84:165–169

    CAS  PubMed  Google Scholar 

  36. Bonds DE, Larson JC, Schwartz AV, Strotmeyer ES, Robbins J, Rodriguez BL, Johnson KC, Margolis KL (2006) Risk of fracture in women with type 2 diabetes: the women’s health initiative observational study. J Clin Endocr Metab 91:3404–3410

    Article  CAS  Google Scholar 

  37. Strotmeyer ES, Cauley JA (2007) Diabetes mellitus, bone mineral density, and fracture risk. Curr Opin Endocrinol Diabetes Obes 14:429–435

    Article  Google Scholar 

  38. Nevitt MC, Cummings SR, Stone KL, Palermo L, Black DM, Bauer DC, Genant HK, Hochberg MC, Ensrud KE, Hillier TA, Cauley JA (2005) Risk factors for a first-incident radiographic vertebral fracture in women > or = 65 years of age: the study of osteoporotic fractures. J Bone Miner Res 20:131–140

    Article  Google Scholar 

  39. Melton LJ 3rd, Hartmann LC, Achenbach SJ, Atkinson EJ, Therneau TM, Khosla S (2012) Fracture risk in women with breast cancer: a population-based study. J Bone Miner Res 27:1196–1205

    Article  Google Scholar 

  40. Chen Z, Maricic M, Bassford TL, Pettinger M, Ritenbaugh C, Lopez AM, Barad DH, Gass M, Leboff MS (2005) Fracture risk among breast cancer survivors: results from the women’s health initiative observational study. Arch Intern Med 165:552–558

    Article  Google Scholar 

  41. Court-Brown CM, Caesar B (2006) Epidemiology of adult fractures: a review. Injury 37:691–697

    Article  Google Scholar 

  42. Hsu MI, Liou TH, Chou SY, Chang CY, Hsu CS (2007) Diagnostic criteria for polycystic ovary syndrome in Taiwanese Chinese women: comparison between Rotterdam 2003 and NIH 1990. Fertil Steril 88:727–729

    Article  Google Scholar 

  43. Hsu MI (2015) Clinical characteristics in Taiwanese women with polycystic ovary syndrome. Clin Exp Reprod Med 42:86–93

    Article  Google Scholar 

  44. Zhao Y, Qiao J (2013) Ethnic differences in the phenotypic expression of polycystic ovary syndrome. Steroids 78:755–760

    Article  CAS  Google Scholar 

  45. Shi Y, Guo M, Yan J, Sun W, Zhang X, Geng L, Xu L, Chen Z (2007) Analysis of clinical characteristics in large-scale Chinese women with polycystic ovary syndrome. Neuro Endocrinol Lett 28:807–810

    CAS  PubMed  Google Scholar 

  46. Chen X, Yang D, Li L, Feng S, Wang L (2006) Abnormal glucose tolerance in Chinese women with polycystic ovary syndrome. Hum Reprod 21:2027–2032

    Article  CAS  Google Scholar 

  47. Wei HJ, Young R, Kuo IL, Liaw CM, Chiang HS, Yeh CY (2009) Prevalence of insulin resistance and determination of risk factors for glucose intolerance in polycystic ovary syndrome: a cross-sectional study of Chinese infertility patients. Fertil Steril 91:1864–1868

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was based in part on data from the National Health Insurance Research Database provided by the Bureau of National Health Insurance and the Department of Health and Welfare and managed by the National Health Research Institutes. The interpretation and conclusions contained within do not represent those of the Bureau of National Health Insurance, Department of Health or National Health Research Institutes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueh-Han Hsu.

Ethics declarations

Conflict of interest

The authors disclose no conflicts of financial or other interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, HY., Lee, HS., Huang, WT. et al. Increased risk of fractures in patients with polycystic ovary syndrome: a nationwide population-based retrospective cohort study. J Bone Miner Metab 36, 741–748 (2018). https://doi.org/10.1007/s00774-017-0894-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-017-0894-8

Keywords

Navigation