Dual-energy X-ray absorptiometry underestimates in vivo lumbar spine bone mineral density in overweight rats

  • Rim Cherif
  • Laurence Vico
  • Norbert Laroche
  • Mohsen Sakly
  • Nebil Attia
  • Cedric Lavet
Original Article

Abstract

Dual-energy X-ray absorptiometry (DXA) is currently the most widely used technique for measuring areal bone mineral density (BMD). However, several studies have shown inaccuracy, with either overestimation or underestimation of DXA BMD measurements in the case of overweight or obese individuals. We have designed an overweight rat model based on junk food to compare the effect of obesity on in vivo and ex vivo BMD and bone mineral content measurements. Thirty-eight 6-month old male rats were given a chow diet (n = 13) or a high fat and sucrose diet (n = 25), with the calorie amount being kept the same in the two groups, for 19 weeks. L1 BMD, L1 bone mineral content, amount of abdominal fat, and amount of abdominal lean were obtained from in vivo DXA scan. Ex vivo L1 BMD was also measured. A difference between in vivo and ex vivo DXA BMD measurements (P < 0.0001) is evidenced with an underestimation of in vivo BMD by (8.47 ± 10.54)%. This difference was found for the chow and high fat, high sucrose diets (P = 0.008), and a significant interaction between in vivo measurements, ex vivo measurements, and diet was observed (P = 0.030). Also, the data show a positive significant correlation of ex vivo BMD with body weight, perirenal fat, abdominal fat, and abdominal lean. Multiple linear regression analysis shows that body weight, abdominal fat, and abdominal lean were independently related to ex vivo BMD. DXA underestimated lumbar in vivo BMD in overweight rats, and this measurement error is related to body weight and abdominal fat. Therefore, caution must be used when one is interpreting BMD among overweight and obese individuals.

Keywords

Dual-energy X-ray absorptiometry Bone mineral density Underestimation Overweight rat Fat 

References

  1. 1.
    Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K et al (1993) Bone density at various sites for prediction of hip fractures. Lancet 341:72–75Google Scholar
  2. 2.
    Greco EA, Francomano D, Fornari R, Marocco C, Lubrano C, Papa V et al (2013) Negative association between trunk fat, insulin resistance and skeleton in obese women. World J Diabetes 4:31–39Google Scholar
  3. 3.
    Compston JE, Flahive J, Hosmer DW, Watts NB, Siris ES, Silverman S et al (2014) Relationship of weight, height, and body mass index with fracture risk at different sites in postmenopausal women: the Global Longitudinal Study of Osteoporosis in Women (GLOW). J Bone Miner Res 29:487–493CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Blake GM, Fogelman I (2007) The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgrad Med J 83:509–517CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bansal SC, Khandelwal N, Rai DV, Sen R, Bhadada SK, Sharma KA, Goswami N (2011) Comparison between the QCT and the DEXA scanners in the evaluation of BMD in the lumbar spine. J Clin Diagn Res 5:694–699Google Scholar
  6. 6.
    Ellis KJ (2000) Human body composition: in vivo methods. Physiol Rev 80:649–680PubMedGoogle Scholar
  7. 7.
    Bolotin HH, Sievänen H, Grashuis JL (2003) Patient-specific DXA bone mineral density inaccuracies: quantitative effects of nonuniform extraosseous fat distributions. J Bone Miner Res 18:1020–1027CrossRefPubMedGoogle Scholar
  8. 8.
    Tothill P, Weir N, Loveland J (2014) Errors in dual-energy X-ray scanning of the hip because of nonuniform fat distribution. J Clin Densitom 17:91–96CrossRefPubMedGoogle Scholar
  9. 9.
    Ho CP, Kim RW, Schaffler MB, Sartoris DJ (1990) Accuracy of dual-energy radiographic absorptiometry of the lumbar spine: cadaver study. Radiology 176:171–173CrossRefPubMedGoogle Scholar
  10. 10.
    Svendsen OL, Hassager C, Skødt V, Christiansen C (1995) Impact of soft tissue on in vivo accuracy of bone mineral measurements in the spine, hip, and forearm: a human cadaver study. J Bone Miner Res 10:868–873CrossRefPubMedGoogle Scholar
  11. 11.
    Bolotin HH (2007) DXA in vivo BMD methodology: an erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling. Bone 41:138–154CrossRefPubMedGoogle Scholar
  12. 12.
    Javed F, Yu W, Thornton J, Colt E (2009) Effect of fat on measurement of bone mineral density. Int J Body Compos Res 7:37–40Google Scholar
  13. 13.
    Javed F, Wang J, Colt E, Allen L, Yu W, Thornton J, Gallagher D (2008) The validity of iDXA in determining bone mineral content (BMC), bone mineral density (BMD) and body fat (BF) with changes in subcutaneous tissue thickness (STT). Int J Body Comp Res 6:74Google Scholar
  14. 14.
    Weigert JM, Cann CE (1999) Dual energy X-ray absorptiometry (DXA) in obese patient: are normal values really normal? J Womens Imaging 1:11–17Google Scholar
  15. 15.
    Yu EW, Thomas BJ, Brown JK, Finkelstein JS (2012) Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Miner Res 27:119–124CrossRefPubMedGoogle Scholar
  16. 16.
    Roos BO, Hansson TH, Sköldborn H (1980) Dual photon absorptiometry in lumbar vertebrae. Evaluation of the baseline error. Acta Radiol Oncol 19:111–114CrossRefPubMedGoogle Scholar
  17. 17.
    Lavet C, Martin A, Linossier M-T, Vanden Bossche A, Laroche N, Thomas M et al (2016) Fat and sucrose intake induces obesity-related bone metabolism disturbances: kinetic and reversibility studies in growing and adult rats. J Bone Miner Res 31:98–115Google Scholar
  18. 18.
    Gerbaix M, Metz L, Ringot E, Courteix D (2010) Visceral fat mass determination in rodent: validation of dual-energy x-ray absorptiometry and anthropometric techniques in fat and lean rats. Lipids Health Dis 9:140Google Scholar
  19. 19.
    Binkley N, Krueger D, Vallarta-Ast N (2003) An overlying fat panniculus affects femur bone mass measurement. J Clin Densitom 6:199–204CrossRefPubMedGoogle Scholar
  20. 20.
    Tothill P, Pye DW (1992) Errors due to non-uniform distribution of fat in dual X-ray absorptiometry of the lumbar spine. Br J Radiol 65:807–813CrossRefPubMedGoogle Scholar
  21. 21.
    Aloia JF, Vaswani A, Ma R, Flaster E (1995) To what extent is bone mass determined by fat-free or fat mass? Am J Clin Nutr 61:1110–1114PubMedGoogle Scholar
  22. 22.
    Bachrach LK (2000) Dual energy X-ray absorptiometry (DEXA) measurements of bone density and body composition: promise and pitfalls. J Pediatr Endocrinol Metab 13(Suppl 2):983–988PubMedGoogle Scholar
  23. 23.
    Picaud JC, Claris O, Salle BL (1999) Measurement of bone mineral content. J Pediatr 134:125–126CrossRefPubMedGoogle Scholar
  24. 24.
    Laskey MA, Lyttle KD, Flaxman ME, Barber RW (1992) The influence of tissue depth and composition on the performance of the Lunar dual-energy X-ray absorptiometer whole-body scanning mode. Eur J Clin Nutr 46:39–45PubMedGoogle Scholar
  25. 25.
    Svendsen OL, Haarbo J, Hassager C, Christiansen C (1993) Accuracy of measurements of body composition by dual-energy x-ray absorptiometry in vivo. Am J Clin Nutr 57:605–608PubMedGoogle Scholar
  26. 26.
    Goh JC, Low SL, Bose K (1995) Effect of femoral rotation on bone mineral density measurements with dual energy X-ray absorptiometry. Calcif Tissue Int 57:340–343CrossRefPubMedGoogle Scholar
  27. 27.
    Bolotin HH (2001) Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral densitometry may flaw osteopenic/osteoporotic interpretations and mislead assessment of antiresorptive therapy effectiveness. Bone 28:548–555CrossRefPubMedGoogle Scholar
  28. 28.
    Evans EM, Mojtahedi MC, Kessinger RB, Misic MM (2006) Simulated change in body fatness affects Hologic QDR 4500A whole body and central DXA bone measures. J Clin Densitom 9:315–322CrossRefPubMedGoogle Scholar
  29. 29.
    Kim K-N, Kim B-T, Kim K-M, Park S-B, Joo N-S, Je SH et al (2012) The influence of exogenous fat and water on lumbar spine bone mineral density in healthy volunteers. Yonsei Med J 53:289–293CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tothill P, Hannan WJ, Cowen S, Freeman CP (1997) Anomalies in the measurement of changes in total-body bone mineral by dual-energy X-ray absorptiometry during weight change. J Bone Miner Res 12:1908–1921CrossRefPubMedGoogle Scholar
  31. 31.
    Svendsen OL, Hendel HW, Gotfredsen A, Pedersen BH, Andersen T (2002) Are soft tissue composition of bone and non-bone pixels in spinal bone mineral measurements by DXA similar? Impact of weight loss. Clin Physiol Funct Imaging 22:72–77CrossRefPubMedGoogle Scholar
  32. 32.
    Johnson J, Dawson-Hughes B (1991) Precision and stability of dual-energy X-ray absorptiometry measurements. Calcif Tissue Int 49:174–178CrossRefPubMedGoogle Scholar
  33. 33.
    Wahner HW, Dunn WL, Brown ML, Morin RL, Riggs BL (1988) Comparison of dual-energy x-ray absorptiometry and dual photon absorptiometry for bone mineral measurements of the lumbar spine. Mayo Clin Proc 63:1075–1084CrossRefPubMedGoogle Scholar
  34. 34.
    Compston JE, Laskey MA, Croucher PI, Coxon A, Kreitzman S (1992) Effect of diet-induced weight loss on total body bone mass. Clin Sci 82:429–432CrossRefPubMedGoogle Scholar
  35. 35.
    Tothill P, Avenell A, Reid DM (1994) Precision and accuracy of measurements of whole-body bone mineral: comparisons between Hologic, Lunar and Norland dual-energy X-ray absorptiometers. Br J Radiol 67:1210–1217CrossRefPubMedGoogle Scholar
  36. 36.
    Colt E, Kälvesten J, Cook K, Khramov N, Javed F (2010) The effect of fat on the measurement of bone mineral density by digital X-ray radiogrammetry (DXR-BMD). Int J Body Compos Res 8:41–44PubMedPubMedCentralGoogle Scholar
  37. 37.
    Mak IL, DeGuire JR, Lavery P, Agellon S, Weiler HA (2016) Dual-energy X-ray absorptiometry, peripheral quantitative computed tomography, and micro-computed tomography techniques are discordant for bone density and geometry measurements in the guinea pig. J Bone Miner Metab 34:266–276Google Scholar
  38. 38.
    Bolotin HH (2004) The significant effects of bone structure on inherent patient-specific DXA in vivo bone mineral density measurement inaccuracies. Med Phys 31:774–788CrossRefPubMedGoogle Scholar
  39. 39.
    Bolotin HH (1998) A new perspective on the causal influence of soft tissue composition on DXA-measured in vivo bone mineral density. J Bone Miner Res 13:1739–1746CrossRefPubMedGoogle Scholar
  40. 40.
    Guglielmi G, Grimston SK, Fischer KC, Pacifici R (1994) Osteoporosis: diagnosis with lateral and posteroanterior dual x-ray absorptiometry compared with quantitative CT. Radiology 192:845–850CrossRefPubMedGoogle Scholar
  41. 41.
    Grampp S, Genant HK, Mathur A, Lang P, Jergas M, Takada M et al (1997) Comparisons of noninvasive bone mineral measurements in assessing age-related loss, fracture discrimination, and diagnostic classification. J Bone Miner Res 12:697–711CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan 2017

Authors and Affiliations

  • Rim Cherif
    • 1
    • 2
    • 3
  • Laurence Vico
    • 1
    • 2
  • Norbert Laroche
    • 1
    • 2
  • Mohsen Sakly
    • 3
  • Nebil Attia
    • 3
  • Cedric Lavet
    • 1
    • 2
  1. 1.INSERM U1059Saint-Priest-en-JarezFrance
  2. 2.Université de LyonSaint-ÉtienneFrance
  3. 3.UR05ES02, Unité de Recherche de Physiologie Intégrée, Laboratoire de Biochimie et Nutrition Humaine, Faculté des Sciences de BizerteUniversité de CarthageTunisTunisia

Personalised recommendations