Journal of Bone and Mineral Metabolism

, Volume 35, Issue 6, pp 608–615 | Cite as

MiR-5100 promotes osteogenic differentiation by targeting Tob2

  • Huaxin Wang
  • Yazhou Cui
  • Jing Luan
  • Xiaoyan Zhou
  • Chengzhi Li
  • Haiying Li
  • Liang Shi
  • Jinxiang HanEmail author
Original Article


MicroRNAs have emerged as pivotal regulators in various physiological and pathological processes, including osteogenesis. Here we discuss the contribution of miR-5100 to osteoblast differentiation and mineralization. We found that miR-5100 was upregulated during osteoblast differentiation in ST2 and MC3T3-E1 cells. Next, we verified that miR-5100 can promote osteogenic differentiation with gain-of-function and loss-of-function experiments. Target prediction analysis and experimental validation demonstrated that Tob2, which acts as a negative regulator of osteogenesis, was negatively regulated by miR-5100. Furthermore, we confirmed that the important bone-related transcription factor osterix, which can be degraded by binding to Tob2, was influenced by miR-5100 during osteoblast differentiation. Collectively, our results revealed a new molecular mechanism that fine-tunes osteoblast differentiation through miR-5100/Tob2/osterix networks.


miR-5100 Osteoblast differentiation Mineralization Tob2 



This study was supported by the National Natural Science Foundation of China (81371909) and the Key Projects in the National Science and Technology Pillar Program during the Twelfth Five-Year Plan period (2013BAI07B01).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Bushati N, Cohen SM (2007) MicroRNA functions. Annu Rev Cell Dev Biol 23:175–205CrossRefPubMedGoogle Scholar
  2. 2.
    Chua JH, Armugam A, Jeyaseelan K (2009) MicroRNAs: biogenesis, function and applications. Curr Opin Mol Ther 11:189–199PubMedGoogle Scholar
  3. 3.
    Foshay KM, Ian GG (2007) Small RNAs, big potential: the role of MicroRNAs in stem cell function. Curr Stem Cell Res Ther 2:264–271CrossRefPubMedGoogle Scholar
  4. 4.
    Kim VN, Nam JW (2006) Genomics of microRNA. Trends Genet 22:165–173CrossRefPubMedGoogle Scholar
  5. 5.
    Oliver H (2008) Gene regulation by transcription factors and microRNAs. Science 319:1785–1786CrossRefGoogle Scholar
  6. 6.
    Hanna TK, Lea BH, Li C, Sakari K, Moustapha K (2011) Micro-RNAs: targets for enhancing osteoblast differentiation and bone formation. Eur J Endocrinol 166:359–371Google Scholar
  7. 7.
    Yangjin B, Tao Y, Huan-Chang Z, Campeau PM, Yuqing C, Terry B, Dawson BC, Elda M, Jianning T, Lee BH (2012) MiRNA-34c regulates Notch signaling during bone development. Hum Mol Genet 21:2991–3000CrossRefGoogle Scholar
  8. 8.
    Chen L, Holmstrom K, Qiu W, Ditzel N, Shi K, Hokland L, Kassem M (2014) MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells. Stem Cells 32:902–912CrossRefPubMedGoogle Scholar
  9. 9.
    Jia J, Tian Q, Ling S, Liu Y, Yang S, Shao Z (2013) MiR-145 suppresses osteogenic differentiation by targeting Sp7. FEBS Lett 587:3027–3031CrossRefPubMedGoogle Scholar
  10. 10.
    Fukuda T, Ochi H, Sunamura S, Haiden A, Bando W, Inose H, Okawa A, Asou Y, Shu T (2015) MicroRNA-145 regulates osteoblastic differentiation by targeting the transcription factor Cbfb. FEBS Lett 589:3302–3308CrossRefPubMedGoogle Scholar
  11. 11.
    Seeliger C, Karpinski K, Haug AT, Vester H, Schmitt A, Bauer JS, van Griensven M (2014) Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J Bone Miner Res 29:1718–1728CrossRefPubMedGoogle Scholar
  12. 12.
    Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Clotilde T, Laurence Z, Sebastian A (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579Google Scholar
  14. 14.
    Min G, Ronghu K, Tianyi C, Junyi Y, Xiongzheng M (2015) Identification and proteomic analysis of osteoblast-derived exosomes. Biochem Biophys Res Commun 467:27–32CrossRefGoogle Scholar
  15. 15.
    Hadi V, Karin EM, Apostolos B, Margareta SS, Lee JJ, Tvall JOL (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659CrossRefGoogle Scholar
  16. 16.
    Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S (2015) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13:17–24CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cui Y, Luan J, Li H, Zhou X, Han J (2016) Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Lett 590:185–192CrossRefPubMedGoogle Scholar
  18. 18.
    Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74CrossRefPubMedGoogle Scholar
  19. 19.
    Koike M, Shimokawa H, Kanno Z, Ohya K, Soma K (2005) Effects of mechanical strain on proliferation and differentiation of bone marrow stromal cell line ST2. J Bone Miner Metab 23:219–225CrossRefPubMedGoogle Scholar
  20. 20.
    Jiang Q, Li Q, Uitto J (2007) Aberrant mineralization of connective tissues in a mouse model of pseudoxanthoma elasticum: systemic and local regulatory factors. J Invest Dermatol 127:1392–1402CrossRefPubMedGoogle Scholar
  21. 21.
    Straalen JPV, Sanders E, Prummel MF, Sanders GTB (1991) Bone-alkaline phosphatase as indicator of bone formation. Clin Chim Acta 201:27–33CrossRefPubMedGoogle Scholar
  22. 22.
    Hu R, Liu W, Li H, Yang L, Chen C, Xia ZY, Guo LJ, Xie H, Zhou HD, Wu XP, Luo XH (2011) A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J Biol Chem 286:12328–12339CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gamez B, Rodriguez-Carballo E, Bartrons R, Rosa JL, Ventura F (2013) MicroRNA-322 (miR-322) and its target protein Tob2 modulate osterix (Osx) mRNA stability. J Biol Chem 288:14264–14275CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Simons M, Raposo G (2009) Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581CrossRefPubMedGoogle Scholar
  25. 25.
    Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan MLG, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z, Milosevic J, Tkacheva OA, Divito SJ, Jordan R, Lyons-Weiler J, Watkins SC, Morelli AE (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119:756–766CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Huang H, Yun J, Wang Y, Chen T, Yang L, He H, Lin Z, Liu T, Teng Y, Kamp DW (2015) MiR-5100 promotes tumor growth in lung cancer by targeting Rab6. Cancer Lett 362:15–24CrossRefPubMedGoogle Scholar
  27. 27.
    Sebastiaan WG (2010) The mammalian anti-proliferative BTG/Tob protein family. J Cell Physiol 222:66–72CrossRefGoogle Scholar
  28. 28.
    Mauxion F, Chen CYA, Séraphin B, Shyu AB (2009) BTG/TOB factors impact deadenylases. Trends Biochem Sci 34:640–647CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ikematsu N, Yoshida TJ, Ohsugi M, Onda M, Hirai M, Fujimoto J, Yamamoto T (1999) Tob2, a novel anti-proliferative Tob/BTG1 family member, associates with a component of the CCR4 transcriptional regulatory complex capable of binding cyclin-dependent kinases. Oncogene 18:7432–7441CrossRefPubMedGoogle Scholar
  30. 30.
    Tzachanis D, Freeman GJ, Hirano N, Puijenbroek AAFLV, Delfs MW, Berezovskaya A, Nadler LM, Boussiotis VA (2001) Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells. Nat Immunol 2:1174–1182CrossRefPubMedGoogle Scholar
  31. 31.
    Karsenty G (2008) Transcriptional control of skeletogenesis. Annu Rev Genomics Hum Genet 9:183–196CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan 2016

Authors and Affiliations

  • Huaxin Wang
    • 1
    • 2
  • Yazhou Cui
    • 2
  • Jing Luan
    • 2
  • Xiaoyan Zhou
    • 2
  • Chengzhi Li
    • 2
  • Haiying Li
    • 2
  • Liang Shi
    • 2
  • Jinxiang Han
    • 2
    Email author
  1. 1.Shandong University of Traditional Chinese MedicineJinanChina
  2. 2.Shandong Medical Biotechnological Center, Key Laboratory for Biotech Drugs of the Ministry of HealthShandong Academy of Medical SciencesJinanChina

Personalised recommendations