Skip to main content

Advertisement

Log in

Visfatin is a positive predictor of bone mineral density in young survivors of acute lymphocytic leukemia

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Bone mass acquisition may be compromised in survivors of childhood acute lymphocytic leukemia due to various factors, including adiposity. Fat accumulation can affect bone through the direct effect of adipokines or indirectly through the state of chronic inflammation. The aim of this study was to evaluate the effect of body composition and adipokines on bone mass in survivors of acute lymphocytic leukemia. This was a cross-sectional study of 56 survivors aged between 15 and 24 years, 44.6 % of whom received cranial radiotherapy (18–24 Gy), assessed according to body fat, lean mass, and bone mineral density (dual energy X-ray absorptiometry), computed tomography scan-derived abdominal adipose tissue, and adipokines by a multiple regression analysis. Both lumbar spine L1–L4 (trabecular bone) and total body (cortical bone) bone mineral density were positively correlated with visfatin (p < 0.050). Lean mass index was positively correlated, while waist-to-height ratio was negatively correlated with cortical bone (p < 0.010). Low bone mineral density for chronological age was detected in 5.4 % of patients in total body, and 8.9 % at the lumbar spine. In survivors of acute lymphocytic leukemia, visfatin may play an important role in the complex relationship between body composition and bone. At present, visfatin may represent a model for further study of bone metabolism, and could possibly explain the unknown mechanisms linking bone metabolism and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bermeo S, Gunaratnam K, Duque G (2014) Fat and bone interactions. Curr Osteoporos Rep 12:235–242

    Article  PubMed  Google Scholar 

  2. Rhie YJ, Lee KH, Chung SC, Kim HS, Kim DH (2010) Effects of body composition, leptin, and adiponectin on bone mineral density in prepubertal girls. J Korean Med Sci 25:1187–1190

    Article  PubMed  PubMed Central  Google Scholar 

  3. Migliaccio S, Greco EA, Wannenes F, Donini LM, Lenzi A (2014) Adipose, bone and muscle tissues as new endocrine organs: role of reciprocal regulation for osteoporosis and obesity development. Horm Mol Biol Clin Investig 17:39–51

    CAS  PubMed  Google Scholar 

  4. Peng XD, Xie H, Zhao Q, Wu XP, Sun ZQ, Liao EY (2008) Relationships between serum adiponectin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in Chinese men. Clin Chim Acta 387:31–35

    Article  CAS  PubMed  Google Scholar 

  5. Yaris N, Sözen E, Erduran E, Okten A, Orem A, Cakirbay H (2005) Bone mineral metabolism and its relationship to leptin levels in survivors of childhood leukemia and lymphoma. Pediatr Hematol Oncol 22:489–498

    Article  CAS  PubMed  Google Scholar 

  6. Ormsbee MJ, Prado CM, Ilich JZ, Purcell S, Siervo M, Folsom A, Panton L (2014) Osteosarcopenic obesity: the role of bone, muscle, and fat on health. J Cachexia Sarcopenia Muscle 5:183–192

    Article  PubMed  PubMed Central  Google Scholar 

  7. Thomas IH, Donohue JE, Ness KK, Dengel DR, Baker KS, Gurney JG (2008) Bone mineral density in young adult survivors of acute lymphoblastic leukemia. Cancer 113:3248–3256

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kelly KM, Thornton JC, Hughes D, Osunkwo I, Weiner M, Wang J, Horlick M (2009) Total body bone measurements: a cross-sectional study in children with acute lymphoblastic leukemia during and following completion of therapy. Pediatr Blood Cancer 52:33–38

    Article  PubMed  Google Scholar 

  9. te Winkel ML, van Beek RD, de Muinck Keizer-Schrama SM, Uitterlinden AG, Hop WC, Pieters R, van den Heuvel-Eibrink MM (2010) Pharmacogenetic risk factors for altered bone mineral density and body composition in pediatric acute lymphoblastic leukemia. Haematologica 95:752–759

    Article  Google Scholar 

  10. Reilly JJ, Kelly A, Ness P, Dorosty AR, Wallace WH, Gibson BE, Emmett PM, ALSPAC Study Team (2001) Premature adiposity rebound in children treated for acute lymphoblastic leukemia. J Clin Endocrinol Metab 86:2775–2778

    CAS  PubMed  Google Scholar 

  11. van den Heijkant S, Hoorweg-Nijman G, Huisman J, Drent M, van der Pal H, Kaspers GJ, Delemarre-van de Waal H (2011) Effects of growth hormone therapy on bone mass, metabolic balance, and well-being in young adult survivors of childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 33:e231–e238

    Article  PubMed  Google Scholar 

  12. Kaste SC, Qi A, Smith K, Surprise H, Lovorn E, Boyett J, Ferry RJ Jr, Relling MV, Shurtleff SA, Pui CH, Carbone L, Hudson MM, Ness KK (2014) Calcium and cholecalciferol supplementation provides no added benefit to nutritional counseling to improve bone mineral density in survivors of childhood acute lymphoblastic leukemia (ALL). Pediatr Blood Cancer 61:885–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Davies JH, Evans BA, Jones E, Evans WD, Jenney ME, Gregory JW (2004) Osteopenia, excess adiposity and hyperleptinaemia during 2 years of treatment for childhood acute lymphoblastic leukaemia without cranial irradiation. Clin Endocrinol (Oxf) 60:358–365

    Article  CAS  Google Scholar 

  14. Brandalise S, Viana M, Pereira W, Loggetto S, Zouain G, Lee M, Colli G, Fernandes M, Tone M, Azevedo A, Oliveira H, Vianna S, Vieira M, Souza E, Werneck F, Lopes L, Mendonça N, Carvalho N, Custi M, Araujo R, Bandeira F, Mastellaro M, Pimentel N (2004) Chemotherapy in 853 unselected childhood ALL patients. Results of the Brazilian multicenter trial GBTLI ALL-93 [abstract]. Pediatr Blood Cancer 43:s399

    Google Scholar 

  15. Scrideli CA, Assumpção JG, Ganazza MA, Araújo M, Toledo SR, Lee ML, Delbuono E, Petrilli AS, Queiróz RP, Biondi A, Viana MB, Yunes JA, Brandalise SR, Tone LG (2009) A simplified minimal residual disease polymerase chain reaction method at early treatment points can stratify children with acute lymphoblastic leukemia into good and poor outcome groups. Haematologica 94:781–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marshall WA, Tanner JM (1969) Variations in pattern of pubertal changes in girls. Arch Dis Child 44:291–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marshall WA, Tanner JM (1970) Variations in the pattern of pubertal changes in boys. Arch Dis Child 45:13–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. National Center for Health Statistics (2000) Centers for Disease Control and Prevention Growth Charts [http://www.cdc.gov/growthcharts/clinical_charts.htm]. Accessed 01 Sep 2015

  19. Siviero-Miachon AA, Spinola-Castro AM, Lee ML, Andreoni S, Geloneze B, Lederman H, Guerra-Junior G (2013) Cranial radiotherapy predisposes to abdominal adiposity in survivors of childhood acute lymphocytic leukemia. Radiat Oncol 8:39

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kelly TL, Wilson KE, Heymsfield SB (2009) Dual energy X-ray absorptiometry body composition reference values from NHANES. PLoS One 4:e7038

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gordon CM, Leonard MB, Zemel BS (2014) 2013 pediatric position development conference: executive summary and reflections. J Clin Densitom 17:219–224

    Article  PubMed  Google Scholar 

  22. Crabtree NJ, Arabi A, Bachrach LK, Fewtrell M, El-Hajj Fuleihan G, Kecskemethy HH, Jaworski M, Gordon CM, International Society for Clinical Densitometry (2014) Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD pediatric official positions. J Clin Densitom 17:225–242

    Article  PubMed  Google Scholar 

  23. Siviero-Miachon AA, Spinola-Castro AM, Guerra-Junior G (2009) Adiposity in childhood cancer survivors: insights into obesity physiopathology. Arq Bras Endocrinol Metab 53:190–200

    Article  Google Scholar 

  24. Greco EA, Francomano D, Fornari R, Marocco C, Lubrano C, Papa V, Wannenes F, Di Luigi L, Donini LM, Lenzi A, Aversa A, Migliaccio S (2013) Negative association between trunk fat, insulin resistance and skeleton in obese women. World J Diabetes 4:31–39

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cohen A, Dempster DW, Recker RR, Lappe JM, Zhou H, Zwahlen A, Müller R, Zhao B, Guo X, Lang T, Saeed I, Liu XS, Guo XE, Cremers S, Rosen CJ, Stein EM, Nickolas TL, McMahon DJ, Young P, Shane E (2013) Abdominal fat is associated with lower bone formation and inferior bone quality in healthy premenopausal women: a transiliac bone biopsy study. J Clin Endocrinol Metab 98:2562–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Siviero-Miachon AA, Spinola-Castro AM, Lee MLM, Monteiro CMC, Carvalho ACC, Calixto AR, Geloneze B, Guerra-Junior G (2015) Subcutaneous adipose tissue plays a beneficial effect on subclinical atherosclerosis in young survivors of acute lymphocytic leukemia. Vasc Health Risk Manag 11:479–488

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dozio E, Corsi MM, Ruscica M, Passafaro L, Steffani L, Banfi G, Magni P (2011) Adipokine actions on cartilage homeostasis. Adv Clin Chem 55:61–79

    Article  CAS  PubMed  Google Scholar 

  28. Iacobellis G, Iorio M, Napoli N, Cotesta D, Zinnamosca L, Marinelli C, Petramala L, Minisola S, D’Erasmo E, Letizia C (2011) Relation of adiponectin, visfatin and bone mineral density in patients with metabolic syndrome. J Endocrinol Invest 34:e12–e15

    Article  CAS  PubMed  Google Scholar 

  29. Biver E, Salliot C, Combescure C, Gossec L, Hardouin P, Legroux-Gerot I, Cortet B (2011) Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J Clin Endocrinol Metab 96:2703–2713

    Article  CAS  PubMed  Google Scholar 

  30. Romacho T, Sánchez-Ferrer CF, Peiró C (2013) Visfatin/Nampt: an adipokine with cardiovascular impact. Mediat Inflamm 2013:946427

    Article  Google Scholar 

  31. Tohidi M, Akbarzadeh S, Larijani B, Kalantarhormozi M, Ostovar A, Assadi M, Vahdat K, Farrokhnia M, Sanjdideh Z, Amirinejad R, Nabipour I (2012) Omentin-1, visfatin and adiponectin levels in relation to bone mineral density in Iranian postmenopausal women. Bone 51:876–881

    Article  CAS  PubMed  Google Scholar 

  32. Briana DD, Boutsikou M, Boutsikou T, Malamitsi-Puchner A (2014) Associations of novel adipocytokines with bone biomarkers in intra uterine growth-restricted fetuses/neonates at term. J Matern Fetal Neonatal Med 27:984–988

    Article  CAS  PubMed  Google Scholar 

  33. Skoczen S, Tomasik PJ, Gozdzik J, Fijorek K, Krasowska-Kwiecien A, Wiecha O, Czogala W, Dluzniewska A, Sztefko K, Starzyk J, Siedlar M (2014) Visfatin concentrations in children with leukemia before and after stem cell transplantation. Exp Hematol 42:252–260

    Article  CAS  PubMed  Google Scholar 

  34. Scotece M, Conde J, Gómez R, López V, Lago F, Gómez-Reino JJ, Gualillo O (2011) Beyond fat mass: exploring the role of adipokines in rheumatic diseases. Sci World J 11:1932–1947

    Article  CAS  Google Scholar 

  35. Gurney JG, Kaste SC, Liu W, Srivastava DK, Chemaitilly W, Ness KK, Lanctot JQ, Ojha RP, Nottage KA, Wilson CL, Li Z, Robison LL, Hudson MM (2014) Bone mineral density among long-term survivors of childhood acute lymphoblastic leukemia: results from the St. Jude lifetime cohort study. Pediatr Blood Cancer 61:1270–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Muszynska-Roslan K, Panasiuk A, Latoch E, Krawczuk-Rybak M, Konstantynowicz J (2012) Little evidence of low bone mass in acute lymphoblastic leukemia survivors. J Clin Densitom 15:108–115

    Article  PubMed  Google Scholar 

  37. Siviero-Miachon AA, Lee MLM, Guerra-Junior G, Spinola-Castro AM (2014) Are survivors of childhood acute lymphoblastic leukemia at increased risk for low bone mass? J Leuk (Los Angel) 2:150

    Google Scholar 

Download references

Acknowledgments

The authors greatly thank the patients and their families. The authors appreciate the technical assistance of Henrique Lederman, M.D., Ph.D. for performing the body composition assessments, the support of Ricardo Silva Ribeiro for performing the CT scans and abdominal fat layer measurements, and the statistical revision by Gianni Santos and Mitti Koyama. This work was supported by grants from the Sao Paulo State Research Foundation (No. 06/06162-9 to G.G.-J.), and was presented at the 4th European Symposium on Late Complications after Childhood Cancer (ESCCC 14), which was held at The Royal College of Physicians of Edinburgh in Scotland, UK, September 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Maria Spinola-Castro.

Ethics declarations

Conflict of interest

The authors Adriana Aparecida Siviero-Miachon, Angela Maria Spinola-Castro, Maria Lucia de Martino Lee, Antonio Ramos Calixto, Bruno Geloneze, Marise Lazaretti-Castro, and Gil Guerra-Junior declare that they have no competing interests.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siviero-Miachon, A.A., Spinola-Castro, A.M., de Martino Lee, M.L. et al. Visfatin is a positive predictor of bone mineral density in young survivors of acute lymphocytic leukemia. J Bone Miner Metab 35, 73–82 (2017). https://doi.org/10.1007/s00774-015-0728-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-015-0728-5

Keywords

Navigation