Skip to main content

Advertisement

Log in

Pathogenesis and diagnostic criteria for rickets and osteomalacia—proposal by an expert panel supported by the Ministry of Health, Labour and Welfare, Japan, the Japanese Society for Bone and Mineral Research, and the Japan Endocrine Society

  • Perspective
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Rickets and osteomalacia are diseases characterized by impaired mineralization of bone matrix. Recent investigations have revealed that the causes of rickets and osteomalacia are quite variable. Although these diseases can severely impair the quality of life of affected patients, rickets and osteomalacia can be completely cured or at least respond to treatment when properly diagnosed and treated according to the specific causes. On the other hand, there are no standard criteria to diagnose rickets or osteomalacia nationally and internationally. Therefore, we summarize the definition and pathogenesis of rickets and osteomalacia, and propose diagnostic criteria and a flowchart for the differential diagnosis of various causes of these diseases. We hope that these criteria and the flowchart are clinically useful for the proper diagnosis and management of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Reginato AJ, Coquia JA (2003) Musculoskeletal manifestations of osteomalacia and rickets. Best Pract Res Clin Rheumatol 17:1063–1080

    Article  PubMed  Google Scholar 

  2. Whyte MP, Thakker RV (2009) Rickets and osteomalacia. Medicine 37:483–488

    Article  Google Scholar 

  3. Prentice A (2013) Nutritional rickets around the world. J Steroid Biochem Mol Biol 136:201–206

    Article  CAS  PubMed  Google Scholar 

  4. Fukumoto S, Martin TJ (2009) Bone as an endocrine organ. Trends Endocrinol Metab 20:230–236

    Article  CAS  PubMed  Google Scholar 

  5. Endo I, Fukumoto S, Ozono K, Namba N, Tanaka H, Inoue D, Minagawa M, Sugimoto T, Yamauchi M, Michigami T, Matsumoto T (2008) Clinical usefulness of measurement of fibroblast growth factor 23 (FGF23) in hypophosphatemic patients: proposal of diagnostic criteria using FGF23 measurement. Bone 42:1235–1239

    Article  CAS  PubMed  Google Scholar 

  6. Kitanaka S, Takeyama K, Murayama A, Sato T, Okumura K, Nogami M, Hasegawa Y, Niimi H, Yanagisawa J, Tanaka T, Kato S (1998) Inactivating mutations in the 25-hydroxyvitamin D3 1α-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med 338:653–661

    Article  CAS  PubMed  Google Scholar 

  7. Hughes MR, Malloy PJ, Kieback DG, Kesterson RA, Pike JW, Feldman D, O’Malley BW (1988) Point mutations in the human vitamin D receptor gene associated with hypocalcemic rickets. Science 242:1702–1705

    Article  CAS  PubMed  Google Scholar 

  8. Tovey FI, Hall ML, Ell PJ, Hobsley M (1992) A review of postgastrectomy bone disease. J Gastroenterol Hepatol 7:639–645

    Article  CAS  PubMed  Google Scholar 

  9. Collier J (2007) Bone disorders in chronic liver disease. Hepatology 46:1271–1278

    Article  CAS  PubMed  Google Scholar 

  10. Blaine J, Chonchol M, Levi M (2015) Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol. doi:10.2215/CJN.09750913

  11. Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H (2006) SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet 78:179–192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, Gershoni-Baruch R, Albers N, Lichtner P, Schnabel D, Hochberg Z, Strom TM (2006) Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet 78:193–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Lloyd SE, Pearce SH, Fisher SE, Steinmeyer K, Schwappach B, Scheinman SJ, Harding B, Bolino A, Devoto M, Goodyer P, Rigden SP, Wrong O, Jentsch TJ, Craig IW, Thakker RV (1996) A common molecular basis for three inherited kidney stone diseases. Nature 379:445–449

    Article  CAS  PubMed  Google Scholar 

  14. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435

    Article  CAS  PubMed  Google Scholar 

  15. Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y, Yamamoto T, Hampson G, Koshiyama H, Ljunggren O, Oba K, Yang IM, Miyauchi A, Econs MJ, Lavigne J, Juppner H (2003) Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 348:1656–1663

    Article  CAS  PubMed  Google Scholar 

  16. Yamazaki Y, Okazaki R, Shibata M, Hasegawa Y, Satoh K, Tajima T, Takeuchi Y, Fujita T, Nakahara K, Yamashita T, Fukumoto S (2002) Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab 87:4957–4960

    Article  CAS  PubMed  Google Scholar 

  17. Fukumoto S (2014) Anti-fibroblast growth factor 23 antibody therapy. Curr Opin Nephrol Hypertens 23:346–351

    Article  CAS  PubMed  Google Scholar 

  18. Weiss MJ, Cole DE, Ray K, Whyte MP, Lafferty MA, Mulivor RA, Harris H (1988) A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. Proc Natl Acad Sci U S A 85:7666–7669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Bendik I, Friedel A, Roos FF, Weber P, Eggersdorfer M (2014) Vitamin D: a critical and essential micronutrient for human health. Front Physiol 5:248

    Article  PubMed Central  PubMed  Google Scholar 

  20. Kubota T, Kitaoka T, Miura K, Fujiwara M, Ohata Y, Miyoshi Y, Yamamoto K, Takeyari S, Yamamoto T, Namba N, Ozono K (2014) Serum fibroblast growth factor 23 is a useful marker to distinguish vitamin D-deficient rickets from hypophosphatemic rickets. Horm Res Paediatr 81:251–257

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported in part by a grant from the Ministry of Health, Labour and Welfare of Japan.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Fukumoto.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukumoto, S., Ozono, K., Michigami, T. et al. Pathogenesis and diagnostic criteria for rickets and osteomalacia—proposal by an expert panel supported by the Ministry of Health, Labour and Welfare, Japan, the Japanese Society for Bone and Mineral Research, and the Japan Endocrine Society. J Bone Miner Metab 33, 467–473 (2015). https://doi.org/10.1007/s00774-015-0698-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-015-0698-7

Keywords

Navigation