Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases

Abstract

Osteoclasts are cells derived from bone marrow macrophages and are important in regulating bone resorption during bone homeostasis. Understanding what drives osteoclast differentiation and activity is important when studying diseases characterized by heightened bone resorption relative to formation, such as osteoporosis. In the last decade, studies have indicated that reactive oxygen species (ROS), including superoxide and hydrogen peroxide, are crucial components that regulate the differentiation process of osteoclasts. However, there are still many unanswered questions that remain. This review will examine the mechanisms by which ROS can be produced in osteoclasts as well as how it may affect osteoclast differentiation and activity through its actions on osteoclastogenesis signaling pathways. In addition, the contribution of ROS to the aging-associated disease of osteoporosis will be addressed and how targeting ROS may lead to the development of novel therapeutic treatment options.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Wauquier F, Leotoing L, Coxam V, Guicheux J, Wittrant Y (2009) Oxidative stress in bone remodelling and disease. Trends Mol Med 15:468–477

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Vaananen HK, Zhao H, Mulari M, Halleen JM (2000) The cell biology of osteoclast function. J Cell Sci 113:377–381

    CAS  PubMed  Google Scholar 

  3. 3.

    Boyle W, Simonet W, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Altindag O, Erel O, Soran N, Celik H, Selek S (2008) Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatol Int 28:317–321

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, Kousteni S, O’Brien CA, Bellido T, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC (2007) Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 282:27285–27297

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  6. 6.

    Muthusami S, Ramachandran H, Muthusamy B, Vasudevan G, Prabhu V, Subramaniam V, Jagadeesan A, Narasimhan S (2005) Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clin Chim Acta 360:81–86

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Ozgocmen S, Kaya H, Fadillioglu E, Aydogan R, Yilmaz Z (2007) Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis. Mol Cell Biochem 295:45–52

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Bax BE, Alam ASMT, Banerji B, Bax CMR, Bevis PJR, Stevens CR, Moonga BS, Blake DR, Zaidi M (1992) Stimulation of osteoclastic bone-resorption by hydrogen-peroxide. Biochem Biophys Res Commun 183:1153–1158

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85:632–639

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  10. 10.

    Yalin S, Bagis S, Polat G, Dogruer N, Aksit SC, Hatungil R, Erdogan C (2005) Is there a role of free oxygen radicals in primary male osteoporosis ? Clin Exp Rheumatol 23:689–692

    CAS  PubMed  Google Scholar 

  11. 11.

    Harman D (1956) Aging—a theory based on free-radical and radiation-chemistry. J Gerontol 11:298–300

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    CAS  PubMed  Google Scholar 

  13. 13.

    Sareila O, Kelkka T, Pizzolla A, Hultqvist M, Holmdahl R (2011) NOX2 complex-derived ROS as immune regulators. Antioxid Redox Signal 15:2197–2208

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Key LL, Ries WL, Taylor RG, Hays BD, Pitzer BL (1990) Oxygen derived free-radicals in osteoclasts—the specificity and location of the nitroblue tetrazolium Reaction. Bone 11:115–119

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Key LL, Wolf WC, Gundberg CM, Ries WL (1994) Superoxide and bone-resorption. Bone 15:431–436

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Steinbeck MJ, Appel WH, Verhoeven AJ, Karnovsky MJ (1994) Nadph-oxidase expression and in-situ production of superoxide by osteoclasts actively resorbing bone. J Cell Biol 126:765–772

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Yang S, Ries WL, Key LL (1998) Nicotinamide adenine dinucleotide phosphate oxidase in the formation of superoxide in osteoclasts. Calcif Tissue Int 63:346–350

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Darden AG, Ries WL, Wolf WC, Rodriguiz RM, Key LL (1996) Osteoclastic superoxide production and bone resorption: stimulation and inhibition by modulators of NADPH oxidase. J Bone Miner Res 11:671–675

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Fraser JH, Helfrich MH, Wallace HM, Ralston SH (1996) Hydrogen peroxide, but not superoxide, stimulates bone resorption in mouse calvariae. Bone 19:223–226

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Suda N, Morita I, Kuroda T, Murota SI (1993) Participation of oxidative stress in the process of osteoclast differentiation. Biochim Biophys Acta 1157:318–323

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Kim H, Kim IY, Lee SY, Jeong D (2006) Bimodal actions of reactive oxygen species in the differentiation and bone-resorbing functions of osteoclasts. FEBS Lett 580:5661–5665

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Hall TJ, Schaeublin M, Jeker H, Fuller K, Chambers TJ (1995) The role of reactive oxygen intermediates in osteoclastic bone-resorption. Biochem Biophys Res Commun 207:280–287

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Wong BR, Josien R, Choi Y (1999) TRANCE is a TNF family member that regulates dendritic cell and osteoclast function. J Leukoc Biol 65:715–724

    CAS  PubMed  Google Scholar 

  24. 24.

    Ha H, Kwak HB, Lee SW, Jin HM, Kim HM, Kim HH, Lee ZH (2004) Reactive oxygen species mediate RANK signaling in osteoclasts. Exp Cell Res 301:119–127

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS, Kim N, Lee SY (2005) A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106:852–859

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Bartell S, Kim H, Ambrogini E, Han L, Iyer S, Serra Ucer S, Rabinovitch P, Jilka R, Weinstein R, Zhao H, O’Brien C, Manolagas S, Almeida M (2014) FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation. Nat Commun 5:3773

    PubMed Central  PubMed  Article  Google Scholar 

  27. 27.

    Lee NK, Choi HK, Kim DK, Lee SY (2006) Rac1 GTPase regulates osteoclast differentiation through TRANCE-induced NF-kappa B activation. Mol Cell Biochem 281:55–61

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Wang YQ, Lebowitz D, Sun CX, Thang H, Grynpas MD, Glogauer M (2008) Identifying the relative contributions of Rac1 and Rac2 to osteoclastogenesis. J Bone Miner Res 23:260–270

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Sasaki H, Yamamoto H, Tominaga K, Masuda K, Kawai T, Teshima-Kondo S, Rokutan K (2009) NADPH oxidase-derived reactive oxygen species are essential for differentiation of a mouse macrophage cell line (RAW264.7) into osteoclasts. J Med Invest 56:33–41

    PubMed  Article  Google Scholar 

  30. 30.

    Sasaki H, Yamamoto H, Tominaga K, Masuda K, Kawai T, Teshima-Kondo S, Matsuno K, Yabe-Nishimura C, Rokutan K (2009) Receptor activator of nuclear factor-kappa B ligand-induced mouse osteoclast differentiation is associated with switching between NADPH oxidase homologues. Free Radic Biol Med 47:189–199

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Yang S, Madyastha P, Bingel S, Ries W, Key L (2001) A new superoxide-generating oxidase in murine osteoclasts. J Biol Chem 276:5452–5458

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Yang S, Zhang YZ, Ries W, Key L (2004) Expression of Nox4 in osteoclasts. J Cell Biochem 92:238–248

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Martyn KD, Frederick LM, von Loehneysen K, Dinauer MC, Knaus UG (2006) Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 18:69–82

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Takac I, Schroder K, Zhang LL, Lardy B, Anilkumar N, Lambeth JD, Shah AM, Morel F, Brandes RP (2011) The e-loop is involved in hydrogen peroxide formation by the nadph oxidase Nox4. J Biol Chem 286:13304–13313

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  35. 35.

    Case AJ, Li SM, Basu U, Tian J, Zimmerman MC (2013) Mitochondrial-localized NADPH oxidase 4 is a source of superoxide in angiotensin II-stimulated neurons. Am J Physiol Heart Circ Physiol 305:H19–H28

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  36. 36.

    Block K, Gorin Y, Abboud HE (2009) Subcellular localization of Nox4 and regulation in diabetes. Proc Natl Acad Sci USA 106:14385–14390

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  37. 37.

    Goettsch C, Babelova A, Trummer O, Erben RG, Rauner M, Rammelt S, Weissmann N, Weinberger V, Benkhoff S, Kampschulte M, Obermayer-Pietsch B, Hofbauer LC, Brandes RR, Schroder K (2013) NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis. J Clin Investig 123:4731–4738

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  38. 38.

    Asagiri M, Sato K, Usami T, Ochi S, Nishina H, Yoshida H, Morita I, Wagner EF, Mak TW, Serfling E, Takayanagi H (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 202:1261–1269

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  39. 39.

    Kim MS, Yang YM, Son A, Tian YS, Lee SI, Kang SW, Muallem S, Shin DM (2010) RANKL-mediated reactive oxygen species pathway that induces long lasting Ca2+ oscillations essential for osteoclastogenesis. J Biol Chem 285:6913–6921

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  40. 40.

    Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa-B transcription factor and HIV-1. EMBO J 10:2247–2258

    CAS  PubMed Central  PubMed  Google Scholar 

  41. 41.

    Decuypere JP, Monaco G, Missiaen L, De Smedt H, Parys JB, Bultynck G (2011) IP(3) receptors, mitochondria, and Ca signaling: implications for aging. J Aging Res 2011:920178

    PubMed Central  PubMed  Article  Google Scholar 

  42. 42.

    Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Figueira TR, Barros MH, Camargo AA, Castilho RF, Ferreira JCB, Kowaltowski AJ, Sluse FE, Souza-Pinto NC, Vercesi AE (2013) Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid Redox Signal 18:2029–2074

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium-ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425

    CAS  PubMed  Google Scholar 

  45. 45.

    Srinivasan S, Koenigstein A, Joseph J, Sun L, Kalyanaraman B, Zaidi M, Avadhani NG (2010) Role of mitochondrial reactive oxygen species in osteoclast differentiation. Skelet Biol Med 1192:245–252

    CAS  Google Scholar 

  46. 46.

    Zhou J, Ye S, Fujiwara T, Manolagas SC, Zhao H (2013) Steap4 plays a critical role in osteoclastogenesis in vitro by regulating cellular iron/reactive oxygen species (ROS) levels and cAMP response element-binding protein (CREB) activation. J Biol Chem 288:30064–30074

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  47. 47.

    Ishii KA, Fumoto T, Iwai K, Takeshita S, Ito M, Shimohata N, Aburatani H, Taketani S, Lelliott CJ, Vidal-Puig A, Ikeda K (2009) Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med 15:259–266

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Kanzaki H, Shinohara F, Kajiya M, Kodama T (2013) The Keap1/Nrf2 protein axis plays a role in osteoclast differentiation by regulating intracellular reactive oxygen species signaling. J Biol Chem 288:23009–23020

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  49. 49.

    Hyeon S, Lee H, Yang Y, Jeong W (2013) Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation. Free Radic Biol Med 65:789–799

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Brandi ML, Hukkanen M, Umeda T, Moradi-Bidhendi N, Bianchi S, Gross SS, Polak JM, MacIntyre I (1995) Bidirectional regulation of osteoclast function by nitric oxide synthase isoforms. Proc Natl Acad Sci USA 92:2954–2958

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  51. 51.

    Mancini L, Moradi-Bidhendi N, Brandi ML, MacIntyre I (1998) Nitric oxide superoxide and peroxynitrite modulate osteoclast activity. Biochem Biophys Res Commun 243:785–790

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Evans DM, Ralston SH (1996) Nitric oxide and bone. J Bone Miner Res 11:300–305

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Lowik CW, Nibbering PH, van de Ruit M, Papapoulos SE (1994) Inducible production of nitric oxide in osteoblast-like cells and in fetal mouse bone explants is associated with suppression of osteoclastic bone resorption. J Clin Invest 93:1465–1472

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  54. 54.

    Ralston SH, Ho LP, Helfrich MH, Grabowski PS, Johnston PW, Benjamin N (1995) Nitric oxide: a cytokine-induced regulator of bone resorption. J Bone Miner Res 10:1040–1049

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Nilforoushan D, Gramoun A, Glogauer M, Manolson MF (2009) Nitric oxide enhances osteoclastogenesis possibly by mediating cell fusion. Nitric Oxide 21:27–36

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Baek KH, Oh KW, Lee WY, Lee SS, Kim MK, Kwon HS, Rhee EJ, Han JH, Song KH, Cha BY, Lee KW, Kang MI (2010) Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif Tissue Int 87:226–235

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Lean JM, Jagger CJ, Kirstein B, Fuller K, Chambers TJ (2005) Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation. Endocrinology 146:728–735

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Deyhim F, Stoecker BJ, Brusewitz GH, Devareddy L, Arjmandi BH (2005) Dried plum reverses bone loss in an osteopenic rat model of osteoporosis. Menopause 12:755–762

    PubMed  Article  Google Scholar 

  59. 59.

    Franklin M, Bu SY, Lerner MR, Lancaster EA, Bellmer D, Marlow D, Lightfoot SA, Arjmandi BH, Brackett DJ, Lucas EA, Smith BJ (2006) Dried plum prevents bone loss in a male osteoporosis model via IGF-I and the RANK pathway. Bone 39:1331–1342

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Bai XC, Lu D, Liu AL, Zhang ZM, Li XM, Zou ZP, Zeng WS, Cheng BL, Luo SQ (2005) Reactive oxygen species stimulates receptor activator of NF-kappa B ligand expression in osteoblast. J Biol Chem 280:17497–17506

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Bu SY, Lerner M, Stoecker BJ, Boldrin E, Brackett DJ, Lucas EA, Smith BJ (2008) Dried plum polyphenols inhibit osteoclastogenesis by downregulating NFATc1 and inflammatory mediators. Calcif Tissue Int 82:475–488

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Moon HJ, Kim SE, Yun YP, Hwang YS, Bang JB, Park JH, Kwon IK (2011) Simvastatin inhibits osteoclast differentiation by scavenging reactive oxygen species. Exp Mol Med 43:605–612

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  63. 63.

    Kim HJ, Chang EJ, Kim HM, Lee SB, Kim HD, Su KG, Kim HH (2006) Antioxidant alpha-lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-kappaB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-kappaB ligand and tumor necrosis factor-alpha. Free Radic Biol Med 40:1483–1493

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Koh JM, Lee YS, Byun CH, Chang EJ, Kim H, Kim YH, Kim HH, Kim GS (2005) Alpha-lipoic acid suppresses osteoclastogenesis despite increasing the receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio in human bone marrow stromal cells. J Endocrinol 185:401–413

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Polat B, Halici Z, Cadirci E, Albayrak A, Karakus E, Bayir Y, Bilen H, Sahin A, Yuksel TN (2013) The effect of alpha-lipoic acid in ovariectomy and inflammation-mediated osteoporosis on the skeletal status of rat bone. Eur J Pharmacol 718:469–474

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Lever JH (2002) Paget’s disease of bone in Lancashire and arsenic pesticide in cotton mill wastewater: a speculative hypothesis. Bone 31:434–436

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Szymczyk KH, Kerr BAE, Freeman TA, Adams CS, Steinbeck MJ (2006) Involvement of hydrogen peroxide in the differentiation and apoptosis of preosteoclastic cells exposed to arsenite. Biochem Pharmacol 72:761–769

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Xiao XH, Liao EY, Zhou HD, Dai RC, Yuan LQ, Wu XP (2005) Ascorbic acid inhibits osteoclastogenesis of RAW264.7 cells induced by receptor activated nuclear factor kappaB ligand (RANKL) in vitro. J Endocrinol Invest 28:253–260

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Le Nihouannen D, Barralet JE, Fong JE, Komarova SV (2010) Ascorbic acid accelerates osteoclast formation and death. Bone 46:1336–1343

    PubMed  Article  Google Scholar 

  70. 70.

    Sanbe T, Tomofuji T, Ekuni D, Azuma T, Irie K, Tamaki N, Yamamoto T, Morita M (2009) Vitamin C intake inhibits serum lipid peroxidation and osteoclast differentiation on alveolar bone in rats fed on a high-cholesterol diet. Arch Oral Biol 54:235–240

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Kim MH, Ryu SY, Bae MA, Choi JS, Min YK, Kim SH (2008) Baicalein inhibits osteoclast differentiation and induces mature osteoclast apoptosis. Food Chem Toxicol 46:3375–3382

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Moon HJ, Ko WK, Han SW, Kim DS, Hwang YS, Park HK, Kwon IK (2012) Antioxidants, like coenzyme Q10, selenite, and curcumin, inhibited osteoclast differentiation by suppressing reactive oxygen species generation. Biochem Biophys Res Commun 418:247–253

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Léotoing L, Wauquier F, Guicheux J, Miot-Noirault E, Wittrant Y, Coxam V (2013) The polyphenol fisetin protects bone by repressing NF-kappa B and MKP-1-dependent signaling pathways in osteoclasts. Plos One 8:e68388

    PubMed Central  PubMed  Article  Google Scholar 

  74. 74.

    Sakai E, Shimada-Sugawara M, Yamaguchi Y, Sakamoto H, Fumimoto R, Fukuma Y, Nishishita K, Okamoto K, Tsukuba T (2013) Fisetin inhibits osteoclastogenesis through prevention of RANKL-induced ROS production by Nrf2-mediated up-regulation of phase II antioxidant enzymes. J Pharmacol Sci 121:288–298

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Guo JD, Li L, Shi YM, Wang HD, Hou SX (2013) Hydrogen water consumption prevents osteopenia in ovariectomized rats. Br J Pharmacol 168:1412–1420

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  76. 76.

    Li DZ, Zhang QX, Dong XX, Li HD, Ma X (2013) Treatment with hydrogen molecules prevents RANKL-induced osteoclast differentiation associated with inhibition of ROS formation and inactivation of MAPK, AKT and NF-kappa B pathways in murine RAW264.7 cells. J Bone Miner Metab 32:494–504

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Kondo H, Togari A (2011) Continuous treatment with a low-dose beta-agonist reduces bone mass by increasing bone resorption without suppressing bone formation. Calcif Tissue Int 88:23–32

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Kondo H, Takeuchi S, Togari A (2013) beta-Adrenergic signaling stimulates osteoclastogenesis via reactive oxygen species. Am J Physiol Endocrinol Metab 304:E507–E515

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Rao LG, Krishnadev N, Banasikowska K, Rao AV (2003) Lycopene I–effect on osteoclasts: lycopene inhibits basal and parathyroid hormone-stimulated osteoclast formation and mineral resorption mediated by reactive oxygen species in rat bone marrow cultures. J Med Food 6:69–78

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Arshad A, Sengupta S, Sharma S, Ghosh R, Sawlani V, Singh MM (2004) In vitro anti-resorptive activity and prevention of ovariectomy-induced osteoporosis in female Sprague-Dawley rats by ormeloxifene, a selective estrogen receptor modulator. J Steroid Biochem Mol Biol 91:67–78

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Kharkwal G, Chandra V, Fatima I, Dwivedi A (2012) Ormeloxifene inhibits osteoclast differentiation in parallel to downregulating RANKL-induced ROS generation and suppressing the activation of ERK and JNK in murine RAW264.7 cells. J Mol Endocrinol 48:261–270

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Nomura M, Yoshimura Y, Kikuiri T, Hasegawa T, Taniguchi Y, Deyama Y, Koshiro K, Sano H, Suzuki K, Inoue N (2011) Platinum nanoparticles suppress osteoclastogenesis through scavenging of reactive oxygen species produced in RAW264.7 cells. J Pharmacol Sci 117:243–252

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Oka Y, Iwai S, Amano H, Irie Y, Yatomi K, Ryu K, Yamada S, Inagaki K, Oguchi K (2012) Tea polyphenols inhibit rat osteoclast formation and differentiation. J Pharmacol Sci 118:55–64

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    He X, Andersson G, Lindgren U, Li Y (2010) Resveratrol prevents RANKL-induced osteoclast differentiation of murine osteoclast progenitor RAW 264.7 cells through inhibition of ROS production. Biochem Biophys Res Commun 401:356–362

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Kyung TW, Lee JE, Shin HH, Choi HS (2008) Rutin inhibits osteoclast formation by decreasing reactive oxygen species and TNF-alpha by inhibiting activation of NF-kappa B. Exp Mol Med 40:52–58

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  86. 86.

    Horcajada-Molteni MN, Crespy V, Coxam V, Davicco MJ, Remesy C, Barlet JP (2000) Rutin inhibits ovariectomy-induced osteopenia in rats. J Bone Miner Res 15:2251–2258

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Kim MH, Ryu SY, Choi JS, Min YK, Kim SH (2009) Saurolactam inhibits osteoclast differentiation and stimulates apoptosis of mature osteoclasts. J Cell Physiol 221:618–628

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Han KY, Yang D, Chang EJ, Lee Y, Huang H, Sung SH, Lee ZH, Kim YC, Kim HH (2007) Inhibition of osteoclast differentiation and bone resorption by sauchinone. Biochem Pharmacol 74:911–923

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Ahn KS, Sethi G, Chaturvedi MM, Aggarwal BB (2008) Simvastatin, 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, suppresses osteoclastogenesis induced by receptor activator of nuclear factor-kappa B ligand through modulation of NF-kappa B pathway. Int J Cancer 123:1733–1740

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Hie M, Tsukamoto I (2011) Administration of zinc inhibits osteoclastogenesis through the suppression of RANK expression in bone. Eur J Pharmacol 668:140–146

    CAS  PubMed  Article  Google Scholar 

Download references

Conflict of interest

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jean X. Jiang.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Callaway, D.A., Jiang, J.X. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab 33, 359–370 (2015). https://doi.org/10.1007/s00774-015-0656-4

Download citation

Keywords

  • Osteoclast
  • Reactive oxygen species
  • Osteoclastogenesis
  • Oxidative stress