Journal of Bone and Mineral Metabolism

, Volume 33, Issue 4, pp 359–370 | Cite as

Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases

  • Danielle A. Callaway
  • Jean X. JiangEmail author
Invited Review


Osteoclasts are cells derived from bone marrow macrophages and are important in regulating bone resorption during bone homeostasis. Understanding what drives osteoclast differentiation and activity is important when studying diseases characterized by heightened bone resorption relative to formation, such as osteoporosis. In the last decade, studies have indicated that reactive oxygen species (ROS), including superoxide and hydrogen peroxide, are crucial components that regulate the differentiation process of osteoclasts. However, there are still many unanswered questions that remain. This review will examine the mechanisms by which ROS can be produced in osteoclasts as well as how it may affect osteoclast differentiation and activity through its actions on osteoclastogenesis signaling pathways. In addition, the contribution of ROS to the aging-associated disease of osteoporosis will be addressed and how targeting ROS may lead to the development of novel therapeutic treatment options.


Osteoclast Reactive oxygen species Osteoclastogenesis Oxidative stress 


Conflict of interest



  1. 1.
    Wauquier F, Leotoing L, Coxam V, Guicheux J, Wittrant Y (2009) Oxidative stress in bone remodelling and disease. Trends Mol Med 15:468–477PubMedCrossRefGoogle Scholar
  2. 2.
    Vaananen HK, Zhao H, Mulari M, Halleen JM (2000) The cell biology of osteoclast function. J Cell Sci 113:377–381PubMedGoogle Scholar
  3. 3.
    Boyle W, Simonet W, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342PubMedCrossRefGoogle Scholar
  4. 4.
    Altindag O, Erel O, Soran N, Celik H, Selek S (2008) Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatol Int 28:317–321PubMedCrossRefGoogle Scholar
  5. 5.
    Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, Kousteni S, O’Brien CA, Bellido T, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC (2007) Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 282:27285–27297PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Muthusami S, Ramachandran H, Muthusamy B, Vasudevan G, Prabhu V, Subramaniam V, Jagadeesan A, Narasimhan S (2005) Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clin Chim Acta 360:81–86PubMedCrossRefGoogle Scholar
  7. 7.
    Ozgocmen S, Kaya H, Fadillioglu E, Aydogan R, Yilmaz Z (2007) Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis. Mol Cell Biochem 295:45–52PubMedCrossRefGoogle Scholar
  8. 8.
    Bax BE, Alam ASMT, Banerji B, Bax CMR, Bevis PJR, Stevens CR, Moonga BS, Blake DR, Zaidi M (1992) Stimulation of osteoclastic bone-resorption by hydrogen-peroxide. Biochem Biophys Res Commun 183:1153–1158PubMedCrossRefGoogle Scholar
  9. 9.
    Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85:632–639PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Yalin S, Bagis S, Polat G, Dogruer N, Aksit SC, Hatungil R, Erdogan C (2005) Is there a role of free oxygen radicals in primary male osteoporosis ? Clin Exp Rheumatol 23:689–692PubMedGoogle Scholar
  11. 11.
    Harman D (1956) Aging—a theory based on free-radical and radiation-chemistry. J Gerontol 11:298–300PubMedCrossRefGoogle Scholar
  12. 12.
    Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95PubMedGoogle Scholar
  13. 13.
    Sareila O, Kelkka T, Pizzolla A, Hultqvist M, Holmdahl R (2011) NOX2 complex-derived ROS as immune regulators. Antioxid Redox Signal 15:2197–2208PubMedCrossRefGoogle Scholar
  14. 14.
    Key LL, Ries WL, Taylor RG, Hays BD, Pitzer BL (1990) Oxygen derived free-radicals in osteoclasts—the specificity and location of the nitroblue tetrazolium Reaction. Bone 11:115–119PubMedCrossRefGoogle Scholar
  15. 15.
    Key LL, Wolf WC, Gundberg CM, Ries WL (1994) Superoxide and bone-resorption. Bone 15:431–436PubMedCrossRefGoogle Scholar
  16. 16.
    Steinbeck MJ, Appel WH, Verhoeven AJ, Karnovsky MJ (1994) Nadph-oxidase expression and in-situ production of superoxide by osteoclasts actively resorbing bone. J Cell Biol 126:765–772PubMedCrossRefGoogle Scholar
  17. 17.
    Yang S, Ries WL, Key LL (1998) Nicotinamide adenine dinucleotide phosphate oxidase in the formation of superoxide in osteoclasts. Calcif Tissue Int 63:346–350PubMedCrossRefGoogle Scholar
  18. 18.
    Darden AG, Ries WL, Wolf WC, Rodriguiz RM, Key LL (1996) Osteoclastic superoxide production and bone resorption: stimulation and inhibition by modulators of NADPH oxidase. J Bone Miner Res 11:671–675PubMedCrossRefGoogle Scholar
  19. 19.
    Fraser JH, Helfrich MH, Wallace HM, Ralston SH (1996) Hydrogen peroxide, but not superoxide, stimulates bone resorption in mouse calvariae. Bone 19:223–226PubMedCrossRefGoogle Scholar
  20. 20.
    Suda N, Morita I, Kuroda T, Murota SI (1993) Participation of oxidative stress in the process of osteoclast differentiation. Biochim Biophys Acta 1157:318–323PubMedCrossRefGoogle Scholar
  21. 21.
    Kim H, Kim IY, Lee SY, Jeong D (2006) Bimodal actions of reactive oxygen species in the differentiation and bone-resorbing functions of osteoclasts. FEBS Lett 580:5661–5665PubMedCrossRefGoogle Scholar
  22. 22.
    Hall TJ, Schaeublin M, Jeker H, Fuller K, Chambers TJ (1995) The role of reactive oxygen intermediates in osteoclastic bone-resorption. Biochem Biophys Res Commun 207:280–287PubMedCrossRefGoogle Scholar
  23. 23.
    Wong BR, Josien R, Choi Y (1999) TRANCE is a TNF family member that regulates dendritic cell and osteoclast function. J Leukoc Biol 65:715–724PubMedGoogle Scholar
  24. 24.
    Ha H, Kwak HB, Lee SW, Jin HM, Kim HM, Kim HH, Lee ZH (2004) Reactive oxygen species mediate RANK signaling in osteoclasts. Exp Cell Res 301:119–127PubMedCrossRefGoogle Scholar
  25. 25.
    Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS, Kim N, Lee SY (2005) A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106:852–859PubMedCrossRefGoogle Scholar
  26. 26.
    Bartell S, Kim H, Ambrogini E, Han L, Iyer S, Serra Ucer S, Rabinovitch P, Jilka R, Weinstein R, Zhao H, O’Brien C, Manolagas S, Almeida M (2014) FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation. Nat Commun 5:3773PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Lee NK, Choi HK, Kim DK, Lee SY (2006) Rac1 GTPase regulates osteoclast differentiation through TRANCE-induced NF-kappa B activation. Mol Cell Biochem 281:55–61PubMedCrossRefGoogle Scholar
  28. 28.
    Wang YQ, Lebowitz D, Sun CX, Thang H, Grynpas MD, Glogauer M (2008) Identifying the relative contributions of Rac1 and Rac2 to osteoclastogenesis. J Bone Miner Res 23:260–270PubMedCrossRefGoogle Scholar
  29. 29.
    Sasaki H, Yamamoto H, Tominaga K, Masuda K, Kawai T, Teshima-Kondo S, Rokutan K (2009) NADPH oxidase-derived reactive oxygen species are essential for differentiation of a mouse macrophage cell line (RAW264.7) into osteoclasts. J Med Invest 56:33–41PubMedCrossRefGoogle Scholar
  30. 30.
    Sasaki H, Yamamoto H, Tominaga K, Masuda K, Kawai T, Teshima-Kondo S, Matsuno K, Yabe-Nishimura C, Rokutan K (2009) Receptor activator of nuclear factor-kappa B ligand-induced mouse osteoclast differentiation is associated with switching between NADPH oxidase homologues. Free Radic Biol Med 47:189–199PubMedCrossRefGoogle Scholar
  31. 31.
    Yang S, Madyastha P, Bingel S, Ries W, Key L (2001) A new superoxide-generating oxidase in murine osteoclasts. J Biol Chem 276:5452–5458PubMedCrossRefGoogle Scholar
  32. 32.
    Yang S, Zhang YZ, Ries W, Key L (2004) Expression of Nox4 in osteoclasts. J Cell Biochem 92:238–248PubMedCrossRefGoogle Scholar
  33. 33.
    Martyn KD, Frederick LM, von Loehneysen K, Dinauer MC, Knaus UG (2006) Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 18:69–82PubMedCrossRefGoogle Scholar
  34. 34.
    Takac I, Schroder K, Zhang LL, Lardy B, Anilkumar N, Lambeth JD, Shah AM, Morel F, Brandes RP (2011) The e-loop is involved in hydrogen peroxide formation by the nadph oxidase Nox4. J Biol Chem 286:13304–13313PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Case AJ, Li SM, Basu U, Tian J, Zimmerman MC (2013) Mitochondrial-localized NADPH oxidase 4 is a source of superoxide in angiotensin II-stimulated neurons. Am J Physiol Heart Circ Physiol 305:H19–H28PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Block K, Gorin Y, Abboud HE (2009) Subcellular localization of Nox4 and regulation in diabetes. Proc Natl Acad Sci USA 106:14385–14390PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Goettsch C, Babelova A, Trummer O, Erben RG, Rauner M, Rammelt S, Weissmann N, Weinberger V, Benkhoff S, Kampschulte M, Obermayer-Pietsch B, Hofbauer LC, Brandes RR, Schroder K (2013) NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis. J Clin Investig 123:4731–4738PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Asagiri M, Sato K, Usami T, Ochi S, Nishina H, Yoshida H, Morita I, Wagner EF, Mak TW, Serfling E, Takayanagi H (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 202:1261–1269PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Kim MS, Yang YM, Son A, Tian YS, Lee SI, Kang SW, Muallem S, Shin DM (2010) RANKL-mediated reactive oxygen species pathway that induces long lasting Ca2+ oscillations essential for osteoclastogenesis. J Biol Chem 285:6913–6921PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa-B transcription factor and HIV-1. EMBO J 10:2247–2258PubMedCentralPubMedGoogle Scholar
  41. 41.
    Decuypere JP, Monaco G, Missiaen L, De Smedt H, Parys JB, Bultynck G (2011) IP(3) receptors, mitochondria, and Ca signaling: implications for aging. J Aging Res 2011:920178PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747PubMedCrossRefGoogle Scholar
  43. 43.
    Figueira TR, Barros MH, Camargo AA, Castilho RF, Ferreira JCB, Kowaltowski AJ, Sluse FE, Souza-Pinto NC, Vercesi AE (2013) Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid Redox Signal 18:2029–2074PubMedCrossRefGoogle Scholar
  44. 44.
    McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium-ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425PubMedGoogle Scholar
  45. 45.
    Srinivasan S, Koenigstein A, Joseph J, Sun L, Kalyanaraman B, Zaidi M, Avadhani NG (2010) Role of mitochondrial reactive oxygen species in osteoclast differentiation. Skelet Biol Med 1192:245–252Google Scholar
  46. 46.
    Zhou J, Ye S, Fujiwara T, Manolagas SC, Zhao H (2013) Steap4 plays a critical role in osteoclastogenesis in vitro by regulating cellular iron/reactive oxygen species (ROS) levels and cAMP response element-binding protein (CREB) activation. J Biol Chem 288:30064–30074PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Ishii KA, Fumoto T, Iwai K, Takeshita S, Ito M, Shimohata N, Aburatani H, Taketani S, Lelliott CJ, Vidal-Puig A, Ikeda K (2009) Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med 15:259–266PubMedCrossRefGoogle Scholar
  48. 48.
    Kanzaki H, Shinohara F, Kajiya M, Kodama T (2013) The Keap1/Nrf2 protein axis plays a role in osteoclast differentiation by regulating intracellular reactive oxygen species signaling. J Biol Chem 288:23009–23020PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Hyeon S, Lee H, Yang Y, Jeong W (2013) Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation. Free Radic Biol Med 65:789–799PubMedCrossRefGoogle Scholar
  50. 50.
    Brandi ML, Hukkanen M, Umeda T, Moradi-Bidhendi N, Bianchi S, Gross SS, Polak JM, MacIntyre I (1995) Bidirectional regulation of osteoclast function by nitric oxide synthase isoforms. Proc Natl Acad Sci USA 92:2954–2958PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Mancini L, Moradi-Bidhendi N, Brandi ML, MacIntyre I (1998) Nitric oxide superoxide and peroxynitrite modulate osteoclast activity. Biochem Biophys Res Commun 243:785–790PubMedCrossRefGoogle Scholar
  52. 52.
    Evans DM, Ralston SH (1996) Nitric oxide and bone. J Bone Miner Res 11:300–305PubMedCrossRefGoogle Scholar
  53. 53.
    Lowik CW, Nibbering PH, van de Ruit M, Papapoulos SE (1994) Inducible production of nitric oxide in osteoblast-like cells and in fetal mouse bone explants is associated with suppression of osteoclastic bone resorption. J Clin Invest 93:1465–1472PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Ralston SH, Ho LP, Helfrich MH, Grabowski PS, Johnston PW, Benjamin N (1995) Nitric oxide: a cytokine-induced regulator of bone resorption. J Bone Miner Res 10:1040–1049PubMedCrossRefGoogle Scholar
  55. 55.
    Nilforoushan D, Gramoun A, Glogauer M, Manolson MF (2009) Nitric oxide enhances osteoclastogenesis possibly by mediating cell fusion. Nitric Oxide 21:27–36PubMedCrossRefGoogle Scholar
  56. 56.
    Baek KH, Oh KW, Lee WY, Lee SS, Kim MK, Kwon HS, Rhee EJ, Han JH, Song KH, Cha BY, Lee KW, Kang MI (2010) Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif Tissue Int 87:226–235PubMedCrossRefGoogle Scholar
  57. 57.
    Lean JM, Jagger CJ, Kirstein B, Fuller K, Chambers TJ (2005) Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation. Endocrinology 146:728–735PubMedCrossRefGoogle Scholar
  58. 58.
    Deyhim F, Stoecker BJ, Brusewitz GH, Devareddy L, Arjmandi BH (2005) Dried plum reverses bone loss in an osteopenic rat model of osteoporosis. Menopause 12:755–762PubMedCrossRefGoogle Scholar
  59. 59.
    Franklin M, Bu SY, Lerner MR, Lancaster EA, Bellmer D, Marlow D, Lightfoot SA, Arjmandi BH, Brackett DJ, Lucas EA, Smith BJ (2006) Dried plum prevents bone loss in a male osteoporosis model via IGF-I and the RANK pathway. Bone 39:1331–1342PubMedCrossRefGoogle Scholar
  60. 60.
    Bai XC, Lu D, Liu AL, Zhang ZM, Li XM, Zou ZP, Zeng WS, Cheng BL, Luo SQ (2005) Reactive oxygen species stimulates receptor activator of NF-kappa B ligand expression in osteoblast. J Biol Chem 280:17497–17506PubMedCrossRefGoogle Scholar
  61. 61.
    Bu SY, Lerner M, Stoecker BJ, Boldrin E, Brackett DJ, Lucas EA, Smith BJ (2008) Dried plum polyphenols inhibit osteoclastogenesis by downregulating NFATc1 and inflammatory mediators. Calcif Tissue Int 82:475–488PubMedCrossRefGoogle Scholar
  62. 62.
    Moon HJ, Kim SE, Yun YP, Hwang YS, Bang JB, Park JH, Kwon IK (2011) Simvastatin inhibits osteoclast differentiation by scavenging reactive oxygen species. Exp Mol Med 43:605–612PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Kim HJ, Chang EJ, Kim HM, Lee SB, Kim HD, Su KG, Kim HH (2006) Antioxidant alpha-lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-kappaB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-kappaB ligand and tumor necrosis factor-alpha. Free Radic Biol Med 40:1483–1493PubMedCrossRefGoogle Scholar
  64. 64.
    Koh JM, Lee YS, Byun CH, Chang EJ, Kim H, Kim YH, Kim HH, Kim GS (2005) Alpha-lipoic acid suppresses osteoclastogenesis despite increasing the receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio in human bone marrow stromal cells. J Endocrinol 185:401–413PubMedCrossRefGoogle Scholar
  65. 65.
    Polat B, Halici Z, Cadirci E, Albayrak A, Karakus E, Bayir Y, Bilen H, Sahin A, Yuksel TN (2013) The effect of alpha-lipoic acid in ovariectomy and inflammation-mediated osteoporosis on the skeletal status of rat bone. Eur J Pharmacol 718:469–474PubMedCrossRefGoogle Scholar
  66. 66.
    Lever JH (2002) Paget’s disease of bone in Lancashire and arsenic pesticide in cotton mill wastewater: a speculative hypothesis. Bone 31:434–436PubMedCrossRefGoogle Scholar
  67. 67.
    Szymczyk KH, Kerr BAE, Freeman TA, Adams CS, Steinbeck MJ (2006) Involvement of hydrogen peroxide in the differentiation and apoptosis of preosteoclastic cells exposed to arsenite. Biochem Pharmacol 72:761–769PubMedCrossRefGoogle Scholar
  68. 68.
    Xiao XH, Liao EY, Zhou HD, Dai RC, Yuan LQ, Wu XP (2005) Ascorbic acid inhibits osteoclastogenesis of RAW264.7 cells induced by receptor activated nuclear factor kappaB ligand (RANKL) in vitro. J Endocrinol Invest 28:253–260PubMedCrossRefGoogle Scholar
  69. 69.
    Le Nihouannen D, Barralet JE, Fong JE, Komarova SV (2010) Ascorbic acid accelerates osteoclast formation and death. Bone 46:1336–1343PubMedCrossRefGoogle Scholar
  70. 70.
    Sanbe T, Tomofuji T, Ekuni D, Azuma T, Irie K, Tamaki N, Yamamoto T, Morita M (2009) Vitamin C intake inhibits serum lipid peroxidation and osteoclast differentiation on alveolar bone in rats fed on a high-cholesterol diet. Arch Oral Biol 54:235–240PubMedCrossRefGoogle Scholar
  71. 71.
    Kim MH, Ryu SY, Bae MA, Choi JS, Min YK, Kim SH (2008) Baicalein inhibits osteoclast differentiation and induces mature osteoclast apoptosis. Food Chem Toxicol 46:3375–3382PubMedCrossRefGoogle Scholar
  72. 72.
    Moon HJ, Ko WK, Han SW, Kim DS, Hwang YS, Park HK, Kwon IK (2012) Antioxidants, like coenzyme Q10, selenite, and curcumin, inhibited osteoclast differentiation by suppressing reactive oxygen species generation. Biochem Biophys Res Commun 418:247–253PubMedCrossRefGoogle Scholar
  73. 73.
    Léotoing L, Wauquier F, Guicheux J, Miot-Noirault E, Wittrant Y, Coxam V (2013) The polyphenol fisetin protects bone by repressing NF-kappa B and MKP-1-dependent signaling pathways in osteoclasts. Plos One 8:e68388PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Sakai E, Shimada-Sugawara M, Yamaguchi Y, Sakamoto H, Fumimoto R, Fukuma Y, Nishishita K, Okamoto K, Tsukuba T (2013) Fisetin inhibits osteoclastogenesis through prevention of RANKL-induced ROS production by Nrf2-mediated up-regulation of phase II antioxidant enzymes. J Pharmacol Sci 121:288–298PubMedCrossRefGoogle Scholar
  75. 75.
    Guo JD, Li L, Shi YM, Wang HD, Hou SX (2013) Hydrogen water consumption prevents osteopenia in ovariectomized rats. Br J Pharmacol 168:1412–1420PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Li DZ, Zhang QX, Dong XX, Li HD, Ma X (2013) Treatment with hydrogen molecules prevents RANKL-induced osteoclast differentiation associated with inhibition of ROS formation and inactivation of MAPK, AKT and NF-kappa B pathways in murine RAW264.7 cells. J Bone Miner Metab 32:494–504PubMedCrossRefGoogle Scholar
  77. 77.
    Kondo H, Togari A (2011) Continuous treatment with a low-dose beta-agonist reduces bone mass by increasing bone resorption without suppressing bone formation. Calcif Tissue Int 88:23–32PubMedCrossRefGoogle Scholar
  78. 78.
    Kondo H, Takeuchi S, Togari A (2013) beta-Adrenergic signaling stimulates osteoclastogenesis via reactive oxygen species. Am J Physiol Endocrinol Metab 304:E507–E515PubMedCrossRefGoogle Scholar
  79. 79.
    Rao LG, Krishnadev N, Banasikowska K, Rao AV (2003) Lycopene I–effect on osteoclasts: lycopene inhibits basal and parathyroid hormone-stimulated osteoclast formation and mineral resorption mediated by reactive oxygen species in rat bone marrow cultures. J Med Food 6:69–78PubMedCrossRefGoogle Scholar
  80. 80.
    Arshad A, Sengupta S, Sharma S, Ghosh R, Sawlani V, Singh MM (2004) In vitro anti-resorptive activity and prevention of ovariectomy-induced osteoporosis in female Sprague-Dawley rats by ormeloxifene, a selective estrogen receptor modulator. J Steroid Biochem Mol Biol 91:67–78PubMedCrossRefGoogle Scholar
  81. 81.
    Kharkwal G, Chandra V, Fatima I, Dwivedi A (2012) Ormeloxifene inhibits osteoclast differentiation in parallel to downregulating RANKL-induced ROS generation and suppressing the activation of ERK and JNK in murine RAW264.7 cells. J Mol Endocrinol 48:261–270PubMedCrossRefGoogle Scholar
  82. 82.
    Nomura M, Yoshimura Y, Kikuiri T, Hasegawa T, Taniguchi Y, Deyama Y, Koshiro K, Sano H, Suzuki K, Inoue N (2011) Platinum nanoparticles suppress osteoclastogenesis through scavenging of reactive oxygen species produced in RAW264.7 cells. J Pharmacol Sci 117:243–252PubMedCrossRefGoogle Scholar
  83. 83.
    Oka Y, Iwai S, Amano H, Irie Y, Yatomi K, Ryu K, Yamada S, Inagaki K, Oguchi K (2012) Tea polyphenols inhibit rat osteoclast formation and differentiation. J Pharmacol Sci 118:55–64PubMedCrossRefGoogle Scholar
  84. 84.
    He X, Andersson G, Lindgren U, Li Y (2010) Resveratrol prevents RANKL-induced osteoclast differentiation of murine osteoclast progenitor RAW 264.7 cells through inhibition of ROS production. Biochem Biophys Res Commun 401:356–362PubMedCrossRefGoogle Scholar
  85. 85.
    Kyung TW, Lee JE, Shin HH, Choi HS (2008) Rutin inhibits osteoclast formation by decreasing reactive oxygen species and TNF-alpha by inhibiting activation of NF-kappa B. Exp Mol Med 40:52–58PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Horcajada-Molteni MN, Crespy V, Coxam V, Davicco MJ, Remesy C, Barlet JP (2000) Rutin inhibits ovariectomy-induced osteopenia in rats. J Bone Miner Res 15:2251–2258PubMedCrossRefGoogle Scholar
  87. 87.
    Kim MH, Ryu SY, Choi JS, Min YK, Kim SH (2009) Saurolactam inhibits osteoclast differentiation and stimulates apoptosis of mature osteoclasts. J Cell Physiol 221:618–628PubMedCrossRefGoogle Scholar
  88. 88.
    Han KY, Yang D, Chang EJ, Lee Y, Huang H, Sung SH, Lee ZH, Kim YC, Kim HH (2007) Inhibition of osteoclast differentiation and bone resorption by sauchinone. Biochem Pharmacol 74:911–923PubMedCrossRefGoogle Scholar
  89. 89.
    Ahn KS, Sethi G, Chaturvedi MM, Aggarwal BB (2008) Simvastatin, 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, suppresses osteoclastogenesis induced by receptor activator of nuclear factor-kappa B ligand through modulation of NF-kappa B pathway. Int J Cancer 123:1733–1740PubMedCrossRefGoogle Scholar
  90. 90.
    Hie M, Tsukamoto I (2011) Administration of zinc inhibits osteoclastogenesis through the suppression of RANK expression in bone. Eur J Pharmacol 668:140–146PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan 2015

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of Texas Health Science CenterSan AntonioUSA

Personalised recommendations