Skip to main content
Log in

Phosphate enhances Fgf23 expression through reactive oxygen species in UMR-106 cells

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Fibroblast growth factor 23 (FGF23) has been shown to work as a phosphotropic hormone. Although FGF23 reduces the serum phosphate level, it has not been established that phosphate directly regulates FGF23 production. In this study, we investigated whether phosphate can enhance Fgf23 expression using the rat osteoblastic cell line UMR-106, which has been shown to express Fgf23 in response to 1,25-dihydroxyvitamin D [1,25(OH)2D]. Phosphate increased Fgf23 expression in a dose- and time-dependent manner in the presence of 1,25(OH)2D. Phosphate also increased Fgf23 promoter activity, but showed no effect on the half-life of Fgf23 messenger RNA. Phosphonoformic acid and PD98059, an inhibitor of MEK, inhibited the effects of phosphate on Fgf23 expression and promoter activity. In addition, phosphate enhanced production of reactive oxygen species (ROS) in UMR-106 cells, and hydrogen peroxide enhanced FGF23 production in a dose- and time-dependent manner. Hydrogen peroxide also enhanced Elk1 reporter activity, a target of the MEK–extracellular-signal-regulated kinase (ERK) pathway. Furthermore, the effect of phosphate on ROS production and Fgf23 expression was inhibited by apocynin, an inhibitor of NADPH oxidase. These results indicate that phosphate directly enhances Fgf23 transcription without affecting the stability of Fgf23 messenger RNA by stimulating NADPH-induced ROS production and the MEK–ERK pathway in UMR-106 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435

    Article  CAS  PubMed  Google Scholar 

  2. Fukumoto S, Martin TJ (2009) Bone as an endocrine organ. Trends Endocrinol Metab 20:230–236

    Article  CAS  PubMed  Google Scholar 

  3. Carpenter TO (2012) The expanding family of hypophosphatemic syndromes. J Bone Miner Metab 30:1–9

    Article  CAS  PubMed  Google Scholar 

  4. Ferrari SL, Bonjour JP, Rizzoli R (2005) Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab 90:1519–1524

    Article  CAS  PubMed  Google Scholar 

  5. Saito H, Maeda A, Ohtomo S, Hirata M, Kusano K, Kato S, Ogata E, Segawa H, Miyamoto K, Fukushima N (2005) Circulating FGF-23 is regulated by 1α,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem 280:2543–2549

    Article  CAS  PubMed  Google Scholar 

  6. Ito N, Fukumoto S, Takeuchi Y, Takeda S, Suzuki H, Yamashita T, Fujita T (2007) Effect of acute changes of serum phosphate on fibroblast growth factor (FGF)23 levels in humans. J Bone Miner Metab 25:419–422

    Article  CAS  PubMed  Google Scholar 

  7. Fukumoto S, Shimizu Y (2011) Fibroblast growth factor 23 as a phosphotropic hormone and beyond. J Bone Miner Metab 29:507–514

    Article  CAS  PubMed  Google Scholar 

  8. Liu S, Tang W, Zhou J, Stubbs JR, Luo Q, Pi M, Quarles LD (2006) Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol 17:1305–1315

    Article  CAS  PubMed  Google Scholar 

  9. Kolek OI, Hines ER, Jones MD, LeSueur LK, Lipko MA, Kiela PR, Collins JF, Haussler MR, Ghishan FK (2005) 1α,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 289:G1036–G1042

    Article  CAS  PubMed  Google Scholar 

  10. Shigematsu T, Kazama JJ, Yamashita T, Fukumoto S, Hosoya T, Gejyo F, Fukagawa M (2004) Possible involvement of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism associated with renal insufficiency. Am J Kidney Dis 44:250–256

    Article  CAS  PubMed  Google Scholar 

  11. Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-Many T (2010) PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol 299:F882–F889

    Article  CAS  PubMed  Google Scholar 

  12. Babu GJ, Lalli MJ, Sussman MA, Sadoshima J, Periasamy M (2000) Phosphorylation of elk-1 by MEK/ERK pathway is necessary for c-fos gene activation during cardiac myocyte hypertrophy. J Mol Cell Cardiol 32:1447–1457

    Article  CAS  PubMed  Google Scholar 

  13. Li QJ, Vaingankar S, Sladek FM, Martins-Green M (2000) Novel nuclear target for thrombin: activation of the Elk1 transcription factor leads to chemokine gene expression. Blood 96:3696–3706

    CAS  PubMed  Google Scholar 

  14. Hirano S, Watanabe T, Kobayashi Y (2013) Effects of arsenic on modification of promyelocytic leukemia (PML): PML responds to low levels of arsenite. Toxicol Appl Pharmacol 273:590–599

    Article  CAS  PubMed  Google Scholar 

  15. Kimata M, Michigami T, Tachikawa K, Okada T, Koshimizu T, Yamazaki M, Kogo M, Ozono K (2010) Signaling of extracellular inorganic phosphate up-regulates cyclin D1 expression in proliferating chondrocytes via the Na+/Pi cotransporter Pit-1 and Raf/MEK/ERK pathway. Bone 47:938–947

    Article  CAS  PubMed  Google Scholar 

  16. Shuto E, Taketani Y, Tanaka R, Harada N, Isshiki M, Sato M, Nashiki K, Amo K, Yamamoto H, Higashi Y, Nakaya Y, Takeda E (2009) Dietary phosphorus acutely impairs endothelial function. J Am Soc Nephrol 20:1504–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee YS, Choi EM (2011) Apocynin stimulates osteoblast differentiation and inhibits bone-resorbing mediators in MC3T3-E1 cells. Cell Immunol 270:224–229

    Article  CAS  PubMed  Google Scholar 

  18. Okamoto T, Taguchi M, Osaki T, Fukumoto S, Fujita T (2013) Phosphate enhances reactive oxygen species production and suppresses osteoblastic differentiation. J Bone Miner Metab 32:393–399

    Article  PubMed  Google Scholar 

  19. Ito N, Findlay DM, Anderson PH, Bonewald LF, Atkins GJ (2013) Extracellular phosphate modulates the effect of 1α,25-dihydroxy vitamin D3 (1,25D) on osteocyte like cells. J Steroid Biochem Mol Biol 2013:183–186

    Article  Google Scholar 

  20. Isakova T, Wahl P, Vargas GS, Gutierrez OM, Scialla J, Xie H, Appleby D, Nessel L, Bellovich K, Chen J, Hamm L, Gadegbeku C, Horwitz E, Townsend RR, Anderson CA, Lash JP, Hsu CY, Leonard MB, Wolf M (2011) Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79:1370–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ruiz S, Pergola PE, Zager RA, Vaziri ND (2013) Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int 83:1029–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Fukumoto.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hori, M., Kinoshita, Y., Taguchi, M. et al. Phosphate enhances Fgf23 expression through reactive oxygen species in UMR-106 cells. J Bone Miner Metab 34, 132–139 (2016). https://doi.org/10.1007/s00774-015-0651-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-015-0651-9

Keywords

Navigation