Journal of Bone and Mineral Metabolism

, Volume 33, Issue 5, pp 496–506 | Cite as

What is the role of bosentan in healing of femur fractures in a rat model?

  • Ali Aydin
  • Zekai Halici
  • Erol Akpinar
  • A. Murat Aksakal
  • Murat Saritemur
  • Muhammed Yayla
  • C. Semih Kunak
  • Elif Cadirci
  • H. Tarik Atmaca
  • S. Sena Karcioglu
Original Article

Abstract

The purpose of this study was to examine the effects bosentan (which is a strong vasoconstrictor) on bone fracture pathophysiology, and investigate the roles of the nonselective endothelin 1 receptor blocker bosentan on the bone fractures formed in rats through radiographic, histopathologic, and immunohistochemical methods. The rats were divided into three groups (six rats in each group): a femoral fracture control group, a femoral fracture plus bosentan at 50 mg/kg group, and a femoral fracture plus bosentan at 100 mg/kg group. The femoral fracture model was established by transversely cutting the femur at the midsection. After manual reduction, the fractured femur was fixed with intramedullary Kirschner wires. The radiographic healing scores of the bosentan 100 and 50 mg/kg groups were significantly better that those of the fracture control group. The fracture callus percent of new bone in the bosentan 100 mg/kg group was significantly greater than that in the control group. Also, semiquantitative analysis showed higher positive vascular endothelial growth factor and osteocalcin staining and lower positive endothelin receptor type A staining in the treatment groups than in the control group. Bosentan treatment also decreased tissue endothelin 1 expression relative to that in the fracture control group. As a result of our study, the protective effect of bosentan was shown in experimental femoral fracture healing in rats by radiographic, histopathologic, and molecular analyses.

Keywords

Bosentan Endothelin 1 Bone fracture Rat Femur 

References

  1. 1.
    Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y et al (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415CrossRefPubMedGoogle Scholar
  2. 2.
    Piechota A, Polanczyk A, Goraca A (2010) Role of endothelin-1 receptor blockers on hemodynamic parameters and oxidative stress. Pharmacol Rep 62:28–34CrossRefPubMedGoogle Scholar
  3. 3.
    Resink TJ, Scott-Burden T, Buhler FR (1990) Activation of multiple signal transduction pathways by endothelin in cultured human vascular smooth muscle cells. Eur J Biochem 189:415–421CrossRefPubMedGoogle Scholar
  4. 4.
    Suzuki T, Kumazaki T, Mitsui Y (1993) Endothelin-1 Is produced and secreted by neonatal rat cardiac myocytes in vitro. Biochem Biophys Res Commun 191:823–830CrossRefPubMedGoogle Scholar
  5. 5.
    Ehrenreich H, Anderson RW, Fox CH, Rieckmann P, Hoffman GS, Travis WD et al (1990) Endothelins, peptides with potent vasoactive properties, are produced by human macrophages. J Exp Med 172:1741–1748CrossRefPubMedGoogle Scholar
  6. 6.
    Giaid A, Gibson SJ, Ibrahim NBN, Legon S, Bloom SR, Yanagisawa M et al (1989) Endothelin-1, an endothelium-derived peptide, is expressed in neurons of the human spinal-cord and dorsal-root ganglia. Proc Natl Acad Sci USA 86:7634–7638PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Nelson J, Bagnato A, Battistini B, Nisen P (2003) The endothelin axis: emerging role in cancer. Nat Rev Cancer 3:110–116CrossRefPubMedGoogle Scholar
  8. 8.
    Mestek ML, Weil BR, Greiner JJ, Westby CM, DeSouza CA, Stauffer BL (2010) Osteopenia and endothelin-1-mediated vasconstrictor tone in postmenopausal women. Bone 47:542–545PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Gulhan I, Kebapcilar L, Alacacioglu A, Bilgili S, Kume T, Aytac B et al (2009) Postmenopausal women with osteoporosis may be associated with high endothelin-1. Gynecol Endocrinol 25:674–678CrossRefPubMedGoogle Scholar
  10. 10.
    Chang JM, Kuo MC, Chen HM, Lee CH, Lai YH, Chen HC et al (2006) Endothelin-1 regulates parathyroid hormone expression of human parathyroid cells. Clin Nephrol 66:25–31CrossRefPubMedGoogle Scholar
  11. 11.
    Tatrai A, Foster S, Lakatos P, Shankar G, Stern PH (1992) Endothelin-1 actions on resorption, collagen and noncollagen protein synthesis, and phosphatidylinositol turnover in bone organ cultures. Endocrinology 131:603–607PubMedGoogle Scholar
  12. 12.
    von Schroeder HP, Veillette CJ, Payandeh J, Qureshi A, Heersche JN (2003) Endothelin-1 promotes osteoprogenitor proliferation and differentiation in fetal rat calvarial cell cultures. Bone 33:673–684CrossRefGoogle Scholar
  13. 13.
    Zhong X, Wang H, Huang S (2014) Endothelin-1 induces interleukin-18 expression in human osteoblasts. Arch Oral Biol 59:289–296CrossRefPubMedGoogle Scholar
  14. 14.
    Stern PH, Tatrai A, Semler DE, Lee SK, Lakatos P, Strieleman PJ et al (1995) Endothelin receptors, second messengers, and actions in bone. J Nutr 125:2028S–2032SPubMedGoogle Scholar
  15. 15.
    MacKenzie EJ, Bosse MJ, Pollak AN, Webb LX, Swiontkowski MF, Kellam JF et al (2005) Long-term persistence of disability following severe lower-limb trauma. Results of a seven-year follow-up. J Bone Joint Surg Am 87:1801–1809CrossRefPubMedGoogle Scholar
  16. 16.
    Stauffer BL, Hoetzer GL, Smith DT, DeSouza CA (2004) Plasma C-reactive protein is not elevated in physically active postmenopausal women taking hormone replacement therapy. J Appl Physiol 96:143–148CrossRefPubMedGoogle Scholar
  17. 17.
    Cardillo C, Campia U, Bryant MB, Panza JA (2002) Increased activity of endogenous endothelin in patients with type II diabetes mellitus. Circulation 106:1783–1787CrossRefPubMedGoogle Scholar
  18. 18.
    Trueta J, Buhr AJ (1963) The vascular contribution to osteogenesis V. The vasculature supplying the epiphysial cartilage in rachitic rats. J Bone Joint Surg Br 45:572–581PubMedGoogle Scholar
  19. 19.
    Trueta J, Little K (1960) The vascular contribution to osteogenesis. II. Studies with the electron microscope. J Bone Joint Surg Br 42-B:367–376PubMedGoogle Scholar
  20. 20.
    Hauge EM, Qvesel D, Eriksen EF, Mosekilde L, Melsen F (2001) Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res 16:1575–1582CrossRefPubMedGoogle Scholar
  21. 21.
    Clarkin CE, Gerstenfeld LC (2013) VEGF and bone cell signalling: an essential vessel for communication? Cell Biochem Funct 31:1–11CrossRefPubMedGoogle Scholar
  22. 22.
    Maes C, Kobayashi T, Selig MK, Torrekens S, Roth SI, Mackem S et al (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19:329–344PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Tsiridis E, Upadhyay N, Giannoudis P (2007) Molecular aspects of fracture healing: which are the important molecules? Injury 38:S11–25CrossRefPubMedGoogle Scholar
  24. 24.
    Rath B, Nam J, Knobloch TJ, Lannutti JJ, Agarwal S (2008) Compressive forces induce osteogenic gene expression in calvarial osteoblasts. J Biomech 41:1095–1103PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Dickson KF, Katzman S, Paiement G (1995) The importance of the blood supply in the healing of tibial fractures. Contemp Orthop 30:489–493PubMedGoogle Scholar
  26. 26.
    Park S, Han SH, Lee TJ (1999) Algorithm for recipient vessel selection in free tissue transfer to the lower extremity. Plast Reconstr Surg 103:1937–1948CrossRefPubMedGoogle Scholar
  27. 27.
    Lu C, Miclau T, Hu D, Marcucio RS (2007) Ischemia leads to delayed union during fracture healing: a mouse model. J Orthop Res 25:51–61PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Lu C, Hansen E, Sapozhnikova A, Hu D, Miclau T, Marcucio RS (2008) Effect of age on vascularization during fracture repair. J Orthop Res 26:1384–1389PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Teplyakov AI (2004) Endothelin-1 involved in systemic cytokine network inflammatory response at atherosclerosis. J Cardiovasc Pharmacol 44:S274–275CrossRefPubMedGoogle Scholar
  30. 30.
    Skalska AB, Pietrzycka A, Stepniewski M (2009) Correlation of endothelin 1 plasma levels with plasma antioxidant capacity in elderly patients treated for hypertension. Clin Biochem 42:358–364CrossRefPubMedGoogle Scholar
  31. 31.
    Li L, Watts SW, Banes AK, Galligan JJ, Fink GD, Chen AF (2003) NADPH oxidase-derived superoxide augments endothelin-1-induced venoconstriction in mineralocorticoid hypertension. Hypertension 42:316–321CrossRefPubMedGoogle Scholar
  32. 32.
    Onuoha GN, Alpar EK (2000) Elevation of plasma CGRP and SP levels in orthopedic patients with fracture neck of femur. Neuropeptides 34:116–120CrossRefPubMedGoogle Scholar
  33. 33.
    Shuid AN, Mohamad S, Muhammad N, Fadzilah FM, Mokhtar SA, Mohamed N et al (2011) Effects of alpha-tocopherol on the early phase of osteoporotic fracture healing. J Orthop Res 29:1732–1738CrossRefPubMedGoogle Scholar
  34. 34.
    Kim SH, Kim JH, You DG, Saravanakumar G, Yoon HY, Choi KY et al (2013) Self-assembled dextran sulphate nanoparticles for targeting rheumatoid arthritis. Chem Commun 49:10349–10351CrossRefGoogle Scholar
  35. 35.
    Huo MH, Troiano NW, Pelker RR, Gundberg CM, Friedlaender GE (1991) The influence of ibuprofen on fracture repair: biomechanical, biochemical, histologic, and histomorphometric parameters in rats. J Orthop Res 9:383–390CrossRefPubMedGoogle Scholar
  36. 36.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  37. 37.
    Cho TJ, Kim JA, Chung CY, Yoo WJ, Gerstenfeld LC, Einhorn TA et al (2007) Expression and role of interleukin-6 in distraction osteogenesis. Calcif Tissue Int 80:192–200CrossRefPubMedGoogle Scholar
  38. 38.
    Kon T, Cho TJ, Aizawa T, Yamazaki M, Nooh N, Graves D et al (2001) Expression of osteoprotegerin, receptor activator of NF-κB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res 16:1004–1014CrossRefPubMedGoogle Scholar
  39. 39.
    Pan WTET (1992) The biochemistry of fracture healing. Curr Orthop 6:207213CrossRefGoogle Scholar
  40. 40.
    Dinarello CA, Mier JW (1987) Lymphokines. N Engl J Med 317:940–945CrossRefPubMedGoogle Scholar
  41. 41.
    Kimble RB, Vannice JL, Bloedow DC, Thompson RC, Hopfer W, Kung VT et al (1994) Interleukin-1 receptor antagonist decreases bone loss and bone resorption in ovariectomized rats. J Clin Invest 93:1959–1967PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Kimble RB, Bain S, Pacifici R (1997) The functional block of TNF but not of IL-6 prevents bone loss in ovariectomized mice. J Bone Miner Res 12:935–941CrossRefPubMedGoogle Scholar
  43. 43.
    Skjødt H, Russell G (1992) Bone cell biology and the regulation of bone turnover. In: Gowen M (ed) Cytokines and Bone Metabolism. CRC, Boca RatonGoogle Scholar
  44. 44.
    Stashenko P, Dewhirst FE, Peros WJ, Kent RL, Ago JM (1987) Synergistic interactions between interleukin-1, tumor-necrosis-factor, and lymphotoxin in bone-resorption. J Immunol 138:1464–1468PubMedGoogle Scholar
  45. 45.
    Skalska AB, Pietrzycka A, Stepniewski M (2009) Correlation of endothelin 1 plasma levels with plasma antioxidant capacity in elderly patients treated for hypertension. Clin Biochem 42:358–364CrossRefPubMedGoogle Scholar
  46. 46.
    Teplyakov AI (2004) Endothelin-1 involved in systemic cytokine network inflammatory response at atherosclerosis. J Cardiovasc Pharmacol 44:S274–S275CrossRefPubMedGoogle Scholar
  47. 47.
    Ruetten H, Thiemermann C (1997) Endothelin-1 stimulates the biosynthesis of tumour necrosis factor in macrophages: ET-receptors, signal transduction and inhibition by dexamethasone. J Physiol Pharmacol 48:675–688PubMedGoogle Scholar
  48. 48.
    Yang TL, Chen MF, Jiang JL, Xie QY, Li YP, Li YJ (2005) The endothelin receptor antagonist decreases is chemia/reperfusion-induced tumor necrosis factor production in isolated rat hearts. Int J Cardiol 100:495–498CrossRefPubMedGoogle Scholar
  49. 49.
    Riad A, Bien S, Gratz M, Escher F, Westermann D, Heimesaat MM et al (2008) Toll-like receptor-4 deficiency attenuates doxorubicin-induced cardiomyopathy in mice. Eur J Heart Fail 10:233–243CrossRefPubMedGoogle Scholar
  50. 50.
    Yayla M, Halici Z, Unal B, Bayir Y, Akpinar E, Gocer F (2014) Protective effect of Et-1 receptor antagonist bosentan on paracetamol induced acute liver toxicity in rats. Eur J Pharmacol 726:87–95Google Scholar
  51. 51.
    Lu CY, Miclau T, Hu D, Marcucio RS (2007) Ischemia leads to delayed union during fracture healing: a mouse model. J Orthop Res 25:51–61PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Patel JN, Jager A, Schalkwijk C, Corder R, Douthwaite JA, Yudkin JS et al (2002) Effects of tumour necrosis factor-alpha in the human forearm: blood flow and endothelin-1 release. Clin Sci (Lond) 103:409–415CrossRefGoogle Scholar
  53. 53.
    Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5:623–628CrossRefPubMedGoogle Scholar
  54. 54.
    Huh JE, Kwon NH, Baek YH, Lee JD, Choi DY, Jingushi S et al (2009) Formononetin promotes early fracture healing through stimulating angiogenesis by up-regulating VEGFR-2/Flk-1 in a rat fracture model. Int Immunopharmacol 9:1357–1365CrossRefPubMedGoogle Scholar
  55. 55.
    Kandalaft LE, Motz GT, Busch J, Coukos G (2011) Angiogenesis and the tumor vasculature as antitumor immune modulators: the role of vascular endothelial growth factor and endothelin. Cancer Immunol Immunother 344:129–148CrossRefGoogle Scholar
  56. 56.
    Grimshaw MJ (2005) Endothelins in breast tumour cell invasion. Cancer Lett 222:129–138CrossRefPubMedGoogle Scholar
  57. 57.
    Antonarakis ES, Carducci MA, Eisenberger MA (2010) Novel targeted therapeutics for metastatic castration-resistant prostate cancer. Cancer Lett 291:1–13PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Aldridge SE, Lennard TW, Williams JR, Birch MA (2005) Vascular endothelial growth factor receptors in osteoclast differentiation and function. Biochem Biophys Res Commun 335:793–798CrossRefPubMedGoogle Scholar
  59. 59.
    Sipola A, Nelo K, Hautala T, Ilvesaro J, Tuukkanen J (2006) Endostatin inhibits VEGF-A induced osteoclastic bone resorption in vitro. BMC Musculoskelet Disord 7:56PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Kayal RA, Tsatsas D, Bauer MA, Allen B, Al-Sebaei MO, Kakar S et al (2007) Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity. J Bone Miner Res 22:560–568PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    James ND, Caty A, Borre M, Zonnenberg BA, Beuzeboc P, Morris T et al (2009) Safety and efficacy of the specific endothelin-A receptor antagonist ZD4054 in patients with hormone-resistant prostate cancer and bone metastases who were pain free or mildly symptomatic: a double-blind, placebo-controlled, randomised, phase 2 trial. Eur Urol 55:1112–1123CrossRefPubMedGoogle Scholar
  62. 62.
    James ND, Caty A, Payne H, Borre M, Zonnenberg BA, Beuzeboc P et al (2010) Final safety and efficacy analysis of the specific endothelin A receptor antagonist zibotentan (ZD4054) in patients with metastatic castration-resistant prostate cancer and bone metastases who were pain-free or mildly symptomatic for pain: a double-blind, placebo-controlled, randomized phase II trial. BJU Int 106:966–973CrossRefPubMedGoogle Scholar
  63. 63.
    Grimshaw MJ (2007) Endothelins and hypoxia-inducible factor in cancer. Endocr Relat Cancer 14:233–244CrossRefPubMedGoogle Scholar
  64. 64.
    Guise TA, Mohammad KS (2004) Endothelins in bone cancer metastases. Cancer Treat Res 118:197–212CrossRefPubMedGoogle Scholar
  65. 65.
    Ingram RT, Clarke BL, Fisher LW, Fitzpatrick LA (1993) Distribution of noncollagenous proteins in the matrix of adult human bone: evidence of anatomic and functional heterogeneity. J Bone Miner Res 8:1019–1029CrossRefPubMedGoogle Scholar
  66. 66.
    Hauschka PV, Lian JB, Cole DE, Gundberg CM (1989) Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 69:990–1047PubMedGoogle Scholar
  67. 67.
    Goldstone AP, Howard JK, Lord GM, Ghatei MA, Gardiner JV, Wang ZL et al (2002) Leptin prevents the fall in plasma osteocalcin during starvation in male mice. Biochem Biophys Res Commun 295:475–481CrossRefPubMedGoogle Scholar
  68. 68.
    Ngueguim FT, Khan MP, Donfack JH, Tewari D, Dimo T, Kamtchouing P et al (2013) Ethanol extract of Peperomia pellucida (Piperaceae) promotes fracture healing by an anabolic effect on osteoblasts. J Ethnopharmacol 148:62–68CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan 2014

Authors and Affiliations

  • Ali Aydin
    • 1
  • Zekai Halici
    • 2
  • Erol Akpinar
    • 2
  • A. Murat Aksakal
    • 3
  • Murat Saritemur
    • 4
  • Muhammed Yayla
    • 2
  • C. Semih Kunak
    • 5
  • Elif Cadirci
    • 6
  • H. Tarik Atmaca
    • 7
  • S. Sena Karcioglu
    • 2
  1. 1.Department of Orthopedics and TraumatologyAtaturk University Faculty of MedicineErzurumTurkey
  2. 2.Department of PharmacologyAtaturk University Faculty of MedicineErzurumTurkey
  3. 3.Department of Orthopedics and TraumathologySevket Yilmaz Education and Research HospitalBursaTurkey
  4. 4.Department of Emergency MedicineAtaturk University Faculty of PharmacyErzurumTurkey
  5. 5.Department of PharmacologyOrdu University Faculty of MedicineOrduTurkey
  6. 6.Department of PharmacologyAtaturk University Faculty of PharmacyErzurumTurkey
  7. 7.Department of PathologyKırıkkale University Faculty of VeterinaryKırıkkaleTurkey

Personalised recommendations