Skip to main content

Advertisement

Log in

The protective effect of lycopene intake on bone loss in ovariectomized rats

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Antioxidant lycopene supplementation has been shown to decrease oxidative stress and have beneficial effects on bone health. However, it remains unclear whether lycopene exerts its beneficial effect on bone metabolism through mitigation of oxidative stress in vivo. The aim of this study was to investigate whether lycopene intake protects against bone loss by reducing oxidative stress in ovariectomized rats. Female Sprague–Dawley 6-week-old rats were ovariectomized and randomly divided into four groups according to the lycopene content of their diet: 0, 50, 100, and 200 ppm. The tibial bone mineral density (BMD) in the 50, 100, and 200 ppm groups was significantly higher than that in the 0 ppm group. Serum and urinary bone resorption marker levels were significantly lower in the 50, 100, and 200 ppm groups than in the 0 ppm group. There was no significant difference in systemic oxidative stress markers among all groups. However, systemic oxidative stress levels were inversely correlated with the tibial BMD. Our findings suggest that lycopene intake significantly inhibits bone loss by suppressing bone resorption in ovariectomized rats. Further studies are necessary to clarify the effect of lycopene on oxidative stress in local tissues such as bone tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Halliwell B (2011) Free radicals and antioxidants—quo vadis? Trends Pharmacol Sci 32:125–130

    Article  CAS  PubMed  Google Scholar 

  2. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological function and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  3. Wauquier F, Leotoing L, Coxam V, Guicheux J, Wittrant Y (2009) Oxidative stress in bone remodeling and diseases. Trends Mol Med 15:468–477

    Article  CAS  PubMed  Google Scholar 

  4. Fraser JHE, Helfrich MH, Wallace HM, Ralston SH (1996) Hydrogen peroxide, but not superoxide, stimulates bone resorption in mouse calvaria. Bone 19:223–226

    Article  CAS  PubMed  Google Scholar 

  5. Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS, Kim N, Lee SY (2005) A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106:852–859

    Article  CAS  PubMed  Google Scholar 

  6. Banifi G, Iorio EL, Corsi MM (2008) Oxidative stress, free radical and bone remodeling. Clin Chem Lab Med 46:1550–1555

    Google Scholar 

  7. Weitzmann MN, Pacifici R (2006) Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 116:1186–1194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Almeida M, Han L, Martin-Milla M, Plotkin LI, Stewart SA, Roberson PK, Kousteni S, O’Brien CA, Bellido T, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC (2007) Skeletal involution by age-related oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 282:27285–27297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hernández I, Delgado JL, Díaz J, Quesada T, Teruel MJG, Lianos MC, Carbonell LF (2000) 17β-estradiol prevents oxidative stress and decreases blood pressure in ovariectomized rats. Am J Physiol Regulatory Integrative Comp Physiol 279:1599–1605

    Google Scholar 

  10. Topçuoglu A, Uzun H, Balci H, Karakus M, Çoban I, Altug T, Aydin S, Topçuoglu D, Çakatay U (2009) Effects of estrogens on oxidative protein damage in plasma and tissues in ovariectomized rats. Clin Invest Med 32:133–143

    Google Scholar 

  11. Bednarek-Tupikowska G, Tworowska U, Jedrychowska I, Radomska B, Tupikowski K, Bidzinska-Speichert B, Milewicz A (2006) Effects of oestradiol and oestroprogestin on erythrocyte antioxidative enzyme system activity in postmenopausal women. Clin Endocrinol 64:463–468

    CAS  Google Scholar 

  12. Di Mascio P, Kaiser S, Sies H (1989) Lycopene as the most efficient biological carotenoids singlet oxygen quencher. Arch Biochem Biophys 274:532–538

    Article  PubMed  Google Scholar 

  13. Mackinnon ES, Rao AV, Josse RG, Rao LG (2011) Supplementation with the antioxidant lycopene significantly decreases oxidative stress parameters and the bone resorption marker N-telopeptide of type I collagen in postmenopausal women. Osteoporosis Int 22:1091–1101

    Article  CAS  Google Scholar 

  14. Rao LG, Krishnadev N, Banasikowska K, Rao AV (2003) Lycopene I––Effect on osteoclast: lycopene inhibits basal and parathyroid hormone-stimulated osteoclast formation and mineral resorption mediated by reactive oxygen species in rat bone marrow cultures. J Med Food 6:69–78

    Article  CAS  PubMed  Google Scholar 

  15. Liang H, Yu F, Tong Z, Zeng W (2012) Lycopene effects on serum mineral elements and bone strength in rats. Molecules 17:7093–7102

    Article  CAS  PubMed  Google Scholar 

  16. Cesarone MR, Belcaro G, Carratelli M, Cornelli U, De Sanctis MT, Incandela L, Barsotti A, Terranova R, Nicolaides A (1999) A simple test to monitor oxidative stress. Int Angiol 18:127–130

    CAS  PubMed  Google Scholar 

  17. Alberti A, Bolognini L, Macciantelli D, Caratelli M (2000) The radical cation of N,N-diethyl-para-phenylenediamine: a possible indicator of oxidative stress in biological samples. Res Chem Intermed 26:253–267

    Article  CAS  Google Scholar 

  18. Kotani K, Sakane N (2012) C-reactive protein and reactive oxygen metabolites in subjects with metabolic syndrome. J Int Med Res 40:1074–1081

    Article  CAS  PubMed  Google Scholar 

  19. Nagatomo F, Fujino H, Kondo H, Ishihara A (2012) Oxygen concentration-dependent oxidative stress levels in rats. Oxid Med Cell 2012:381763

    Google Scholar 

  20. Kim DJ, Takasuka N, Kim JM, Sekine K, Ota T, Asamoto M, Murakoshi M, Nishino H, Nir Z, Tsuda H (1997) Chemoprevention by lycopene of mouse lung neoplasia after combined initiation treatment with DEN, MNU and DMH. Cancer Lett 120:15–22

    Article  CAS  PubMed  Google Scholar 

  21. Kitade Y, Watanabe S, Masaki T, Nishioka M, Nishino H (2002) Inhibition of liver fibrosis in LEC rats by a carotenoid, lycopene, or a herbal medicine, Sho-saiko-to. Hepatol Res 22:196–205

    Article  CAS  PubMed  Google Scholar 

  22. Omi N, Katayama R, Asano K, Miyakawa N, Nishino H, Ezawa I (2011) The effectiveness of lycopene intake with treadmill running exercise training for bone mineral content increase in growing rats. Jpn Soc Exerc Sports Physiol 18:11–20

    Google Scholar 

  23. Porrini M, Riso P, Testolin G (1998) Absorption of lycopene from single or daily portion of raw and processed tomato. Br J Nutr 80:353–361

    Article  CAS  PubMed  Google Scholar 

  24. Ferreira ALA, Yeum KJ, Liu C, Smith D, Krinsky NI, Wang XD, Russell RM (2000) Tissue distribution of lycopene in ferrets and rats after lycopene supplementation. J Nutr 130:1256–1260

    CAS  PubMed  Google Scholar 

  25. Omi N, Tsukahara N, Ezawa I (2001) Effect of milk on bone metabolism in growing male and female rats. J Home Econ Jpn 52:689–698

    CAS  Google Scholar 

  26. Ezawa I, Okada R, Nozaki Y, Ogata E (1979) Breaking-properties and ash contents of femur of growing rat fed a low calcium diet (in Japanese). Nihon Eiyou Shokuryou gakkaishi (J Jpn Soc Nutr Food Sci) 32:329–335

    CAS  Google Scholar 

  27. Omi N, Goseki M, Oida S, Sasaki S, Ezawa I (1994) The nutritional evaluation of globin on maintenance of bone metabolism in ovariectomized osteoporotic rats. J Nutr Sci Vitaminol 40:443–457

    Article  CAS  PubMed  Google Scholar 

  28. Robins SP, Woitge H, Hesley R, Ju J, Seyedin S, Seibel MJ (1994) Direct, enzyme-linked immunoassay for urinary deoxypyridinoline as a specific marker for measuring bone resorption. J Bone Miner Res 9:1643–1649

    Article  CAS  PubMed  Google Scholar 

  29. De Zwart LL, Meerman JH, Commandeur JN, Vermeulen NP (1999) Biomarkers of free radical damage applications in experimental animals and in humans. Free Radic Biol Med 26:202–226

    Article  PubMed  Google Scholar 

  30. Kim L, Rao AV, Rao LG (2003) Lycopene II—Effect on osteoblast: the carotenoid lycopene stimulates cell proliferation and alkaline phosphatase activity of SaOS-2 cells. J Med Food 6:79–86

    Article  CAS  PubMed  Google Scholar 

  31. Iimura Y, Agata U, Takeda S, Kobayashi Y, Yoshida S, Ezawa I, Omi N (2014) Lycopene intake facilitates the increase of bone mineral density in growing female rats. J Nutr Sci Vitaminol 60 (in press)

  32. Dhem A, Goret-Nicaise M (1984) Effects of retinoic acid on rat bone. Food Chem Toxic 22:199–206

    Article  CAS  Google Scholar 

  33. Kneissel M, Studer A, Cortesi R, Susa M (2005) Retinoid-induced bone thinning is caused by subperiosteal osteoclast activity in adult rodents. Bone 36:202–214

    Article  CAS  PubMed  Google Scholar 

  34. Lind T, Sundqvist A, Hu L, Pejler G, Andersson G, Jacobson A, Melhus H (2013) Vitamin A is a negative regulator of osteoblast mineralization. PLoS One 8:e82388

    Article  PubMed Central  PubMed  Google Scholar 

  35. Maggio D, Polidori MC, Barabani M, Tufi A, Ruggiero C, Cecchetti R, Aisa MC, Stahl W, Cherubini A (2006) Low levels of carotenoids and retinol in involutional osteoporosis. Bone 38:244–248

    Article  CAS  PubMed  Google Scholar 

  36. Ferreira AL, Yeum KJ, Russell RM, Krinsky NI, Tang G (2004) Enzymatic and oxidative metabolites of lycopene. J Nutr Biochem 15:493–502

    Article  Google Scholar 

  37. Sthal W, Sies H (1996) Lycopene: a biologically important carotenoid for humans? Arch Biochem Biophys 336:1–9

    Article  Google Scholar 

  38. Lee CM, Boileau AC, Boileau TWM, Williams AW, Swanson KS, Heintz KA, Erdman JW Jr (1999) Review of animal model in carotenoids research. J Nutr 129:2271–2277

    CAS  PubMed  Google Scholar 

  39. Al-Malki AL, Moselhy SS, Refai MY (2011) Synergistic effect of lycopene and tocopherol against oxidative stress and mammary tumorigenesis induced by 7,12-dimethyl(a)benzanthracene in female rats. Toxicol Ind Health 28:542–548

    Article  PubMed  Google Scholar 

  40. Moselhy SS, Almslmani MAB (2008) Chemopreventive effect of lycopene alone or with melatonin against the genesis of oxidative stress and mammary tumors induced by 7, 12 dimethyl(a)benzanthracene in Sprague Dawley female rats. Mol Cell Biochem 319:175–180

    Article  CAS  PubMed  Google Scholar 

  41. Çeribaşi AO, Türk G, Sönmez M, Sakin F, Ateşşahin A (2010) Toxic effect of cyclophosphamide on sperm morphology, testicular histology and blood oxidant–antioxidant balance, and protective roles of lycopene and ellagic acid. Basic Clin Pharmacol Toxicol 107:730–736

    Article  PubMed  Google Scholar 

  42. Lean JM, Davies JT, Fuller K, Jagger CJ, Kirstein B, Partington GA, Urry ZL, Chambers TJ (2003) A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J Clin Invest 112:915–923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Pacifici R (1996) Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res 11:1043–1051

    Article  CAS  PubMed  Google Scholar 

  44. Jagger CJ, Lean JM, Davies JT, Chambers TJ (2005) Tumor necrosis factor-alpha mediates osteopenia caused by depletion of antioxidants. Endocrinology 146:113–118

    Article  CAS  PubMed  Google Scholar 

  45. Grassi F, Tell G, Robbie-Ryan M, Gao Y, Terauchi M, Yang X, Romanello M, Jones DP, Weitzmann MN, Pacifici R (2007) Oxidative stress causes bone loss in estrogen-deficient mice through enhanced bone marrow dendritic cell activation. Proc Natl Acad Sci USA 104:15087–15092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Novack DV (2011) Role of NF-κB in the skeleton. Cell Res 21:169–182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Gouranton E, Thabuis C, Riollet C, Malezet-Desmoulins C, El Yazidi C, Amiot MJ, Borel P, Landrier JF (2011) Lycopene inhibits proinflammatory cytokine and chemokine expression in adipose tissue. J Nutr Biochem 22:642–648

    Article  CAS  PubMed  Google Scholar 

  48. Palozza P, Simone R, Catalano A, Monego G, Barini A, Mele MC, Parrone N, Trombino S, Picci N, Ranelletti FO (2011) Lycopene prevention of oxysterol-induced proinflammatory cytokine cascade in human macrophages: inhibition of NF-κB nuclear binding and increase in PPARγ expression. J Nutr Biochem 22:259–268

    Article  CAS  PubMed  Google Scholar 

  49. Batra N, Kar R, Jiang JX (2012) Gap junctions and hemichannels in signal transmission, function and development of bone. Biochim Biophys Acta 1818:1909–1918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Kyoritsu Bussan Co., Ltd., Japan, for supplying the lycopene samples.

Conflict of interest

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi Omi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iimura, Y., Agata, U., Takeda, S. et al. The protective effect of lycopene intake on bone loss in ovariectomized rats. J Bone Miner Metab 33, 270–278 (2015). https://doi.org/10.1007/s00774-014-0596-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-014-0596-4

Keywords

Navigation