Journal of Bone and Mineral Metabolism

, Volume 32, Issue 2, pp 110–122 | Cite as

Lysophosphatidic acid stimulates osteoclast fusion through OC-STAMP and P2X7 receptor signaling

  • Young Sun Hwang
  • Gwang-Taek Ma
  • Kwang-Kyun Park
  • Won-Yoon Chung
Original Article


Bone is continuously remodeled by bone formation and resorption, and cooperative bone metabolism is precisely regulated to maintain homeostasis. Osteoclasts, which are responsible for bone resorption, are differentiated through multiple steps that include cell fusion at the last step of differentiation, yielding multinuclear cells. However, the factors involved in and the precise mechanism of cell fusion are still unknown. To determine the molecules involved in osteoclast fusion, we examined the effect of lysophosphatidic acid (LPA), which has been reported to participate in the progression of cancer bone metastasis. LPA had no effect on osteoclast formation and bone resorption under receptor activator of nuclear factor kappa B ligand (RANKL) conditions, whereas LPA stimulated osteoclast fusion, thereby causing increased osteoclast diameter and bone resorptive capacity under a RANKL-limited condition. This result encouraged us to assess what molecules are needed for LPA-stimulated osteoclast fusion. Interestingly, LPA stimulated osteoclast stimulatory transmembrane protein (OC-STAMP) and P2X7 receptor mRNA expression during osteoclast fusion under a RANKL limiting condition. siRNA-induced OC-STAMP or P2X7 receptor knockdown significantly suppressed the LPA-stimulated increase in osteoclast diameter and bone resorptive capacity in differentiating cultures. Using cyclosporin A as an inhibitor, we revealed that NF-ATc1 directly regulates OC-STAMP and P2X7 receptor expression during LPA-stimulated osteoclast fusion. These results suggest that LPA is a critical regulator of osteoclast fusion by inducing the OC-STAMP and P2X7 receptor. Therefore, LPA signaling might be useful to help understand their effects on osteoclast formation and as a therapeutic target for patients with pathologically increased osteoclast formation.


Lysophosphatidic acid Osteoclast fusion OC-STAMP P2X7 receptor Osteoclastogenesis 



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A2040564).

Conflict of interest



  1. 1.
    Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508PubMedCrossRefGoogle Scholar
  2. 2.
    Quinn JM, Gillespie MT (2005) Modulation of osteoclast formation. Biochem Biophys Res Commun 328:739–745PubMedCrossRefGoogle Scholar
  3. 3.
    Suda T, Kobayashi K, Jimi E, Udagawa N, Takahashi N (2001) The molecular basis of osteoclast differentiation and activation. Novartis Found Symp 232:235–247PubMedCrossRefGoogle Scholar
  4. 4.
    Kim MS, Day CJ, Morrison NA (2005) MCP-1 is induced by receptor activator of nuclear factor-{kappa}B ligand, promotes human osteoclast fusion, and rescues granulocyte macrophage colony-stimulating factor suppression of osteoclast formation. J Biol Chem 280:16163–16169PubMedCrossRefGoogle Scholar
  5. 5.
    Helming L, Gordon S (2009) Molecular mediators of macrophage fusion. Trends Cell Biol 19:514–522PubMedCrossRefGoogle Scholar
  6. 6.
    Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, Morita K, Ninomiya K, Suzuki T, Miyamoto K, Oike Y, Takeya M, Toyama Y, Suda T (2005) DC-STAMP is essential for cell–cell fusion in osteoclasts and foreign body giant cells. J Exp Med 202:345–351PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    MacLauchlan S, Skokos EA, Meznarich N, Zhu DH, Raoof S, Shipley JM, Senior RM, Bornstein P, Kyriakides TR (2009) Macrophage fusion, giant cell formation, and the foreign body response require matrix metalloproteinase 9. J Leukoc Biol 85:617–626PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Kukita T, Wada N, Kukita A, Kakimoto T, Sandra F, Toh K, Nagata K, Iijima T, Horiuchi M, Matsusaki H, Hieshima K, Yoshie O, Nomiyama H (2004) RANKL-induced DC-STAMP is essential for osteoclastogenesis. J Exp Med 200:941–946PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Yang M, Birnbaum MJ, MacKay CA, Mason-Savas A, Thompson B, Odgren PR (2008) Osteoclast stimulatory transmembrane protein (OC-STAMP), a novel protein induced by RANKL that promotes osteoclast differentiation. J Cell Physiol 215:497–505PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Ke HZ, Qi H, Weidema AF, Zhang Q, Panupinthu N, Crawford DT, Grasser WA, Paralkar VM, Li M, Audoly LP, Gabel CA, Jee WS, Dixon SJ, Sims SM, Thompson DD (2003) Deletion of the P2X7 nucleotide receptor reveals its regulatory roles in bone formation and resorption. Mol Endocrinol 17:1356–1367PubMedCrossRefGoogle Scholar
  11. 11.
    Falzoni S, Chiozzi P, Ferrari D, Buell G, Di Virgilio F (2000) P2X(7) receptor and polykarion formation. Mol Biol Cell 11:3169–3176PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Lemaire I, Falzoni S, Leduc N, Zhang B, Pellegatti P, Adinolfi E, Chiozzi P, Di Virgilio F (2006) Involvement of the purinergic P2X7 receptor in the formation of multinucleated giant cells. J Immunol 177:7257–7265PubMedGoogle Scholar
  13. 13.
    Pellegatti P, Falzoni S, Donvito G, Lemaire I, Di Virgilio F (2011) P2X7 receptor drives osteoclast fusion by increasing the extracellular adenosine concentration. FASEB J 25:1264–1274PubMedCrossRefGoogle Scholar
  14. 14.
    Grey A, Chen Q, Callon K, Xu X, Reid IR, Cornish J (2002) The phospholipids sphingosine-1-phosphate and lysophosphatidic acid prevent apoptosis in osteoblastic cells via a signaling pathway involving G(i) proteins and phosphatidylinositol-3 kinase. Endocrinology 143:4755–4763PubMedCrossRefGoogle Scholar
  15. 15.
    Masiello LM, Fotos JS, Galileo DS, Karin NJ (2006) Lysophosphatidic acid induces chemotaxis in MC3T3-E1 osteoblastic cells. Bone (NY) 39:72–82CrossRefGoogle Scholar
  16. 16.
    Panupinthu N, Rogers JT, Zhao L, Solano-Flores LP, Possmayer F, Sims SM, Dixon SJ (2008) P2X7 receptors on osteoblasts couple to production of lysophosphatidic acid: a signaling axis promoting osteogenesis. J Cell Biol 181:859–871PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Karagiosis SA, Karin NJ (2007) Lysophosphatidic acid induces osteocyte dendrite outgrowth. Biochem Biophys Res Commun 357:194–199PubMedCrossRefGoogle Scholar
  18. 18.
    Kim K, Lee SH, Ha Kim J, Choi Y, Kim N (2008) NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol Endocrinol 22:176–185PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Nair SP, Meghji S, Wilson M, Reddi K, White P, Henderson B (1996) Bacterially induced bone destruction: mechanisms and misconceptions. Infect Immun 64:2371–2380PubMedCentralPubMedGoogle Scholar
  20. 20.
    Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature (Lond) 423:337–342CrossRefGoogle Scholar
  21. 21.
    Bar-Shavit Z (2007) The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J Cell Biochem 102:1130–1139PubMedCrossRefGoogle Scholar
  22. 22.
    Mills GB, May C, McGill M, Roifman CM, Mellors A (1988) A putative new growth factor in ascitic fluid from ovarian cancer patients: identification, characterization, and mechanism of action. Cancer Res 48:1066–1071PubMedGoogle Scholar
  23. 23.
    Xu Y, Gaudette DC, Boynton JD, Frankel A, Fang XJ, Sharma A, Hurteau J, Casey G, Goodbody A, Mellors A, Holub BJ, Mills GB (1995) Characterization of an ovarian cancer activating factor in ascites from ovarian cancer patients. Clin Cancer Res 1:1223–1232PubMedGoogle Scholar
  24. 24.
    Xu Y, Shen Z, Wiper DW, Wu M, Morton RE, Elson P, Kennedy AW, Belinson J, Markman M, Casey G (1998) Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA 280:719–723PubMedCrossRefGoogle Scholar
  25. 25.
    Moolenaar WH (2000) Development of our current understanding of bioactive lysophospholipids. Ann NY Acad Sci 905:1–10PubMedCrossRefGoogle Scholar
  26. 26.
    Hurst-Kennedy J, Boyan BD, Schwartz Z (2009) Lysophosphatidic acid signaling promotes proliferation, differentiation, and cell survival in rat growth plate chondrocytes. Biochim Biophys Acta 1793:836–846PubMedCrossRefGoogle Scholar
  27. 27.
    Boucharaba A, Serre CM, Grès S, Saulnier-Blache JS, Bordet JC, Guglielmi J, Clézardin P, Peyruchaud O (2004) Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest 114:1714–1725PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Boucharaba A, Serre CM, Guglielmi J, Bordet JC, Clézardin P, Peyruchaud O (2006) The type 1 lysophosphatidic acid receptor is a target for therapy in bone metastases. Proc Natl Acad Sci USA 103:9643–9648PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Lapierre DM, Tanabe N, Pereverzev A, Spencer M, Shugg RP, Dixon SJ, Sims SM (2010) Lysophosphatidic acid signals through multiple receptors in osteoclasts to elevate cytosolic calcium concentration, evoke retraction, and promote cell survival. J Biol Chem 285:25792–25801PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    McMichael BK, Meyer SM, Lee BS (2010) c-Src-mediated phosphorylation of thyroid hormone receptor-interacting protein 6 (TRIP6) promotes osteoclast sealing zone formation. J Biol Chem 285:26641–26651PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    David M, Wannecq E, Descotes F, Jansen S, Deux B, Ribeiro J, Serre CM, Grès S, Bendriss-Vermare N, Bollen M, Saez S, Aoki J, Saulnier-Blache JS, Clézardin P, Peyruchaud O (2010) Cancer cell expression of autotaxin controls bone metastasis formation in mouse through lysophosphatidic acid-dependent activation of osteoclasts. PLoS ONE 5:e9741PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Adamopoulos IE, Chao CC, Geissler R, Laface D, Blumenschein W, Iwakura Y, McClanahan T, Bowman EP (2010) Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res Ther 12:R29PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Madyastha PR, Yang S, Ries WL, Key LL Jr (2000) IFN-gamma enhances osteoclast generation in cultures of peripheral blood from osteopetrotic patients and normalizes superoxide production. J Interferon Cytokine Res 20:645–652PubMedCrossRefGoogle Scholar
  34. 34.
    Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL (2000) TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 106:1481–1488PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Akatsu T, Takahashi N, Debari K, Morita I, Murota S, Nagata N, Takatani O, Suda T (1989) Prostaglandins promote osteoclast-like cell formation by a mechanism involving cyclic adenosine 3′,5′-monophosphate in mouse bone marrow cell cultures. J Bone Miner Res 4:29–35PubMedCrossRefGoogle Scholar
  36. 36.
    Islam S, Hassan F, Tumurkhuu G, Dagvadorj J, Koide N, Naiki Y, Mori I, Yoshida T, Yokochi T (2007) Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells. Biochem Biophys Res Commun 360:346–351PubMedCrossRefGoogle Scholar
  37. 37.
    Hotokezaka H, Sakai E, Ohara N, Hotokezaka Y, Gonzales C, Matsuo K, Fujimura Y, Yoshida N, Nakayama K (2007) Molecular analysis of RANKL-independent cell fusion of osteoclast-like cells induced by TNF-alpha, lipopolysaccharide, or peptidoglycan. J Cell Biochem 101:122–1234PubMedCrossRefGoogle Scholar
  38. 38.
    Kim MH, Park M, Baek SH, Kim HJ, Kim SH (2011) Molecules and signaling pathways involved in the expression of OC-STAMP during osteoclastogenesis. Amino Acids 40:1447–1459PubMedCrossRefGoogle Scholar
  39. 39.
    Agrawal A, Buckley KA, Bowers K, Furber M, Gallagher JA, Gartland A (2010) The effects of P2X7 receptor antagonists on the formation and function of human osteoclasts in vitro. Purinergic Signal 6:307–315PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Gartland A, Buckley KA, Bowler WB, Gallagher JA (2003) Blockade of the pore-forming P2X7 receptor inhibits formation of multinucleated human osteoclasts in vitro. Calcif Tissue Int 73:361–369PubMedCrossRefGoogle Scholar
  41. 41.
    Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901PubMedCrossRefGoogle Scholar
  42. 42.
    Hirotani H, Tuohy NA, Woo JT, Stern PH, Clipstone NA (2004) The calcineurin/nuclear factor of activated T cells signaling pathway regulates osteoclastogenesis in RAW264.7 cells. J Biol Chem 279:13984–13992PubMedCrossRefGoogle Scholar
  43. 43.
    Crotti TN, Flannery M, Walsh NC, Fleming JD, Goldring SR, McHugh KP (2006) NFATc1 regulation of the human beta3 integrin promoter in osteoclast differentiation. Gene (Amst) 372:92–102CrossRefGoogle Scholar
  44. 44.
    Ikeda F, Nishimura R, Matsubara T, Hata K, Reddy SV, Yoneda T (2006) Activation of NFAT signal in vivo leads to osteopenia associated with increased osteoclastogenesis and bone-resorbing activity. J Immunol 177:2384–2390PubMedGoogle Scholar
  45. 45.
    Sumoto M, Kogawa M, Wada S, Takayanagi H, Tsujimoto M, Katayama S, Hisatake K, Nogi Y (2004) Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J Biol Chem 279:45969–45979CrossRefGoogle Scholar
  46. 46.
    Miyamoto H, Suzuki T, Miyauchi Y, Iwasaki R, Kobayashi T et al (2012) Osteoclast stimulatory transmembrane protein and dendrite cell-specific transmembrane protein cooperatively modulate cell–cell fusion to form osteoclasts and foreign body giant cells. J Bone Miner Res 27:1289–1297Google Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan 2013

Authors and Affiliations

  • Young Sun Hwang
    • 1
  • Gwang-Taek Ma
    • 2
  • Kwang-Kyun Park
    • 2
  • Won-Yoon Chung
    • 2
  1. 1.Department of Dental Hygiene, College of Health ScienceEulji UniversitySeongnamRepublic of Korea
  2. 2.Oral Cancer Research Institute, Department of Oral Biology, The Applied Life Sciences, Graduate SchoolYonsei University College of DentistrySeoulRepublic of Korea

Personalised recommendations