Journal of Bone and Mineral Metabolism

, Volume 31, Issue 5, pp 579–584

Serum sclerostin levels in healthy men over 50 years of age

  • Harjit Pal Bhattoa
  • John Wamwaki
  • Edit Kalina
  • Roza Foldesi
  • Adam Balogh
  • Peter Antal-Szalmas
Original Article

Abstract

The aim of this study is to evaluate the relationship of serum sclerostin levels with age, cystatin C, bone mineral density (BMD) and biochemical markers of bone turnover in healthy Hungarian men >50 years of age. We determined serum levels of sclerostin and examined its relationship to age, cystatin C, osteocalcin, C-terminal telopeptides of type-I collagen, procollagen type 1 amino-terminal propeptide, 25-hydroxyvitamin D, parathyroid hormone, and L1–L4 (LS) and femur neck (FN) BMD data available from 194 randomly selected ambulatory men belonging to the HunMen cohort. In the study population as a whole [n = 194; age (median, range) 59 (51–81) years], statistically significant correlation was found between sclerostin and age (r = 0.211; p = 0.003), cystatin C (r = 0.246; p = 0.001), FN BMD (r = 0.147; p = 0.041) and LS BMD (r = 0.169; p = 0.019). Compared to middle-aged men (age ≤59 years, n = 98), elderly men (age >59 years, n = 96) had significantly higher serum sclerostin levels (67.8 ± 15.9 vs 63.5 ± 14 pmol/L; p = 0.047). Among men with normal (T score >−1.0) FN BMD, the elderly had significantly higher serum sclerostin levels compared to the middle-aged men (70.4 ± 17 vs 63.9 ± 11.5 pmol/L; p = 0.019). Furthermore, among the elderly men cystatin C was the only significant predictor of serum sclerostin levels (standardized regression coefficient (β) = 0.487; p < 0.001). In the studied healthy elderly cohort, this study reports a significant increase in sclerostin levels with increasing age and deteriorating kidney function as determined by plasma cystatin C levels.

Keywords

Sclerostin Cystatin c Markers of bone turnover Bone mineral density Men 

References

  1. 1.
    Baron R, Rawadi G (2007) Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 148:2635–2643PubMedCrossRefGoogle Scholar
  2. 2.
    Krishnan V, Bryant HU, MacDougald OA (2006) Regulation of bone mass by Wnt signaling. J Clin Invest 116:1202–1209PubMedCrossRefGoogle Scholar
  3. 3.
    Balemans W, Ebeling M, Patel N, Van Hul E, Olson P et al (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10:537–543PubMedCrossRefGoogle Scholar
  4. 4.
    Padhi D, Jang G, Stouch B, Fang L, Posvar E (2011) Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res 26:19–26PubMedCrossRefGoogle Scholar
  5. 5.
    Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287PubMedCrossRefGoogle Scholar
  6. 6.
    Mirza FS, Padhi ID, Raisz LG, Lorenzo JA (2010) Serum sclerostin levels negatively correlate with parathyroid hormone levels and free estrogen index in postmenopausal women. J Clin Endocrinol Metab 95:1991–1997PubMedCrossRefGoogle Scholar
  7. 7.
    Mödder UI, Clowes JA, Hoey K, Peterson JM, McCready L, Oursler MJ, Riggs BL, Khosla S (2011) Regulation of circulating sclerostin levels by sex steroids in women and in men. J Bone Miner Res 26:27–34PubMedCrossRefGoogle Scholar
  8. 8.
    Drake MT, Srinivasan B, Mödder UI, Peterson JM, McCready LK, Riggs BL, Dwyer D, Stolina M, Kostenuik P, Khosla S (2010) Effects of parathyroid hormone treatment on circulating sclerostin levels in postmenopausal women. J Clin Endocrinol Metab 95:5056–5062PubMedCrossRefGoogle Scholar
  9. 9.
    Polyzos SA, Anastasilakis AD, Bratengeier C, Woloszczuk W, Papatheodorou A, Terpos E (2012) Serum sclerostin levels positively correlate with lumbar spinal bone mineral density in postmenopausal women-the six-month effect of risedronate and teriparatide. Osteoporos Int 23:1171–1176PubMedCrossRefGoogle Scholar
  10. 10.
    Gaudio A, Pennisi P, Bratengeier C, Torrisi V, Lindner B, Mangiafico RA, Pulvirenti I, Hawa G, Tringali G, Fiore CE (2010) Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab 95:2248–2253PubMedCrossRefGoogle Scholar
  11. 11.
    Mödder UI, Hoey KA, Amin S, McCready LK, Achenbach SJ, Riggs BL, Melton LJ 3rd, Khosla S (2011) Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J Bone Miner Res 26:373–379PubMedCrossRefGoogle Scholar
  12. 12.
    Ardawi MS, Al-Kadi HA, Rouzi AA, Qari MH (2011) Determinants of serum sclerostin in healthy pre- and postmenopausal women. J Bone Miner Res 26:2812–2822PubMedCrossRefGoogle Scholar
  13. 13.
    Amrein K, Amrein S, Drexler C, Dimai HP, Dobnig H, Pfeifer K, Tomaschitz A, Pieber TR, Fahrleitner-Pammer A (2012) Sclerostin and its association with physical activity, age, gender, body composition, and bone mineral content in healthy adults. J Clin Endocrinol Metab 97:148–154PubMedCrossRefGoogle Scholar
  14. 14.
    Kirmani S, Amin S, McCready LK, Atkinson EJ, Melton LJ 3rd, Müller R, Khosla S (2012) Sclerostin levels during growth in children. Osteoporos Int 23:1123–1130PubMedCrossRefGoogle Scholar
  15. 15.
    Sheng Z, Tong D, Ou Y, Zhang H, Zhang Z, Li S, Zhou J, Zhang J, Liao E (2012) Serum sclerostin levels were positively correlated with fat mass and bone mineral density in central south Chinese postmenopausal women. Clin Endocrinol (Oxf) 76:797–801CrossRefGoogle Scholar
  16. 16.
    Bhattoa HP, Nagy E, More C, Kappelmayer J, Balogh A, Kalina E, Antal-Szalmas P (2013) Prevalence and seasonal variation of hypovitaminosis D and its relationship to bone metabolism in healthy Hungarian men over 50 years of age. The HunMen Study. Osteoporos Int 24:179–186PubMedCrossRefGoogle Scholar
  17. 17.
    Kanis JA, Melton LJ 3rd, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141PubMedCrossRefGoogle Scholar
  18. 18.
    Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, Kusek JW, Van Lente F (2006) Chronic Kidney Disease Epidemiology Collaboration using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 145:247–254PubMedCrossRefGoogle Scholar
  19. 19.
    Cejka D, Jäger-Lansky A, Kieweg H, Weber M, Bieglmayer C, Haider DG, Diarra D, Patsch JM, Kainberger F, Bohle B, Haas M (2012) Sclerostin serum levels correlate positively with bone mineral density and microarchitecture in haemodialysis patients. Nephrol Dial Transplant 27:226–230PubMedCrossRefGoogle Scholar
  20. 20.
    Randers E, Erlandsen EJ (1999) Serum cystatin C as an endogenous marker of the renal function—a review. Clin Chem Lab Med 37:389–395PubMedCrossRefGoogle Scholar
  21. 21.
    Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido TM, Harris SE, Turner CH (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283:5866–5875PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan 2013

Authors and Affiliations

  • Harjit Pal Bhattoa
    • 1
    • 2
  • John Wamwaki
    • 1
  • Edit Kalina
    • 1
  • Roza Foldesi
    • 1
  • Adam Balogh
    • 2
  • Peter Antal-Szalmas
    • 1
  1. 1.Department of Laboratory Medicine, Medical and Health Science CenterUniversity of DebrecenDebrecenHungary
  2. 2.Regional Osteoporosis Center, Department of Obstetrics and Gynecology, Medical and Health Science CenterUniversity of DebrecenDebrecenHungary

Personalised recommendations