Journal of Bone and Mineral Metabolism

, Volume 30, Issue 6, pp 692–699 | Cite as

Smoking is a predictor of worse trabecular mechanical performance in hip fragility fracture patients

  • Ana Maria Rodrigues
  • Joana Caetano-Lopes
  • Ana Catarina Vale
  • Inês Aleixo
  • Ana Sofia Pena
  • Alexandra Faustino
  • Alexandre Sepriano
  • Joaquim Polido-Pereira
  • Elsa Vieira-Sousa
  • Raquel Lucas
  • José Carlos Romeu
  • Jacinto Monteiro
  • Maria Fátima Vaz
  • João Eurico Fonseca
  • Helena Canhão
Original Article

Abstract

Clinical risk factors (CRFs) are established predictors of fracture events. However, the influence of individual CRFs on trabecular mechanical fragility is still a subject of debate. In this study, we aimed to assess differences, adjusted for CRFs, between bone macrostructural parameters measured in ex-vivo specimens from hip fragility fracture patients and osteoarthritis patients, and to determine whether individual CRFs could predict trabecular bone mechanical behavior in hip fragility fractures. Additionally, we also looked for associations between the 10-year risk of major and hip fracture calculated by FRAX and trabecular bone mechanical performance. In this case–control study, a group of fragility fracture patients were compared with a group of osteoarthritis patients, both having undergone hip replacement surgery. A clinical protocol was applied in order to collect CRFs [body mass index (BMI), prior fragility fracture, parental history of hip fracture, long-term use of oral glucocorticoids, rheumatoid arthritis, current smoking, alcohol consumption, age and gender]. The 10-year probability of fracture was calculated. Serum bone turnover markers were determined and dual X-ray absorptiometry performed. Femoral head diameter was evaluated and trabecular bone cylinders were drilled for mechanical testing to determine bone strength, stiffness and toughness. We evaluated 40 hip fragility fracture and 52 osteoarthritis patients. Trabecular bone stiffness was significantly lower (p = 0.042) in hip fragility fracture patients when compared to osteoarthritic individuals, adjusted for age, gender and BMI. No other macrostructural parameter was statistically different between the groups. In hip fragility fracture patients, smoking habits (β = −0.403; p = 0.018) and female gender (β = −0.416; p = 0.008) were independently associated with lower stiffness. In addition, smoking was also independently associated with worse trabecular strength (β = −0.323; p = 0.045), and toughness (β = −0.403; p = 0.018). In these patients, the 10-year risk of major (r = −0.550; p = 0.012) and hip fracture (r = −0.513; p = 0.021) calculated using only CRFs was strongly correlated with femoral neck bone mineral density but not with mechanical performance. Our data showed that among fragility fracture patients active smoking is a predictor of worse intrinsic trabecular mechanical performance, and female gender is also independently associated with lower stiffness. In this population, the 10-year risk of fracture using CRFs with different weights only reflects bone mass loss but not trabecular mechanical properties.

Keywords

Osteoporosis Fracture risk FRAX Mechanical properties 

References

  1. 1.
    Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767PubMedCrossRefGoogle Scholar
  2. 2.
    Abdulghani S, Caetano-Lopes J, Canhao H, Fonseca JE (2009) Biomechanical effects of inflammatory diseases on bone-rheumatoid arthritis as a paradigm. Autoimmun Rev 8:668–671PubMedCrossRefGoogle Scholar
  3. 3.
    Caetano-Lopes J, Nery AM, Canhao H, Duarte J, Cascao R et al (2010) Chronic arthritis leads to disturbances in the bone collagen network. Arthritis Res Ther 12:R9PubMedCrossRefGoogle Scholar
  4. 4.
    Caetano-Lopes J, Nery AM, Henriques R, Canhao H, Duarte J et al (2009) Chronic arthritis directly induces quantitative and qualitative bone disturbances leading to compromised biomechanical properties. Clin Exp Rheumatol 27:475–482PubMedGoogle Scholar
  5. 5.
    Canhao H, Lucas R, Fonseca JE, Costa L, Romeu JC et al (2008) Factors influencing calcaneus quantitative ultrasound measurements in an urban population. Clin Exp Rheumatol 26:67–72PubMedGoogle Scholar
  6. 6.
    Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202PubMedCrossRefGoogle Scholar
  7. 7.
    Cummings SR (1985) Are patients with hip fractures more osteoporotic? Review of the evidence. Am J Med 78:487–494PubMedCrossRefGoogle Scholar
  8. 8.
    Greenspan SL, Myers ER, Maitland LA, Resnick NM, Hayes WC (1994) Fall severity and bone mineral density as risk factors for hip fracture in ambulatory elderly. JAMA 271:128–133PubMedCrossRefGoogle Scholar
  9. 9.
    Grampp S, Lang P, Jergas M, Gluer CC, Mathur A et al (1995) Assessment of the skeletal status by peripheral quantitative computed tomography of the forearm: short-term precision in vivo and comparison to dual X-ray absorptiometry. J Bone Miner Res 10:1566–1576PubMedCrossRefGoogle Scholar
  10. 10.
    Carter DR, Hayes WC (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am 59:954–962PubMedGoogle Scholar
  11. 11.
    Matsuura M, Eckstein F, Lochmuller EM, Zysset PK (2008) The role of fabric in the quasi-static compressive mechanical properties of human trabecular bone from various anatomical locations. Biomech Model Mechanobiol 7:27–42PubMedCrossRefGoogle Scholar
  12. 12.
    Hernandez CJ, Gupta A, Keaveny TM (2006) A biomechanical analysis of the effects of resorption cavities on cancellous bone strength. J Bone Miner Res 21:1248–1255PubMedCrossRefGoogle Scholar
  13. 13.
    Seeman E (2002) Pathogenesis of bone fragility in women and men. Lancet 359:1841–1850PubMedCrossRefGoogle Scholar
  14. 14.
    Orwoll ES, Marshall LM, Nielson CM, Cummings SR, Lapidus J et al (2009) Finite element analysis of the proximal femur and hip fracture risk in older men. J Bone Miner Res 24:475–483PubMedCrossRefGoogle Scholar
  15. 15.
    Tamaki J, Iki M, Fujita Y, Kouda K, Yura A et al (2011) Impact of smoking on bone mineral density and bone metabolism in elderly men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) study. Osteoporos Int 22:133–141PubMedCrossRefGoogle Scholar
  16. 16.
    Soares EV, Favaro WJ, Cagnon VH, Bertran CA, Camilli JA (2010) Effects of alcohol and nicotine on the mechanical resistance of bone and bone neoformation around hydroxyapatite implants. J Bone Miner Metab 28:101–107PubMedCrossRefGoogle Scholar
  17. 17.
    Kanis JA, Johnell O, Oden A, Johansson H, De Laet C et al (2005) Smoking and fracture risk: a meta-analysis. Osteoporos Int 16:155–162PubMedCrossRefGoogle Scholar
  18. 18.
    Kanis JA, Johnell O, De Laet C, Johansson H, Oden A et al (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35:375–382PubMedCrossRefGoogle Scholar
  19. 19.
    Kanis JA, Johansson H, Oden A, Johnell O, de Laet C et al (2004) A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res 19:893–899PubMedCrossRefGoogle Scholar
  20. 20.
    Kanis JA, Johansson H, Oden A, Johnell O, De Laet C et al (2004) A family history of fracture and fracture risk: a meta-analysis. Bone 35:1029–1037PubMedCrossRefGoogle Scholar
  21. 21.
    Kanis JA, Johansson H, Johnell O, Oden A, De Laet C et al (2005) Alcohol intake as a risk factor for fracture. Osteoporos Int 16:737–742PubMedCrossRefGoogle Scholar
  22. 22.
    Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936PubMedCrossRefGoogle Scholar
  23. 23.
    Johansson H, Kanis JA, Oden A, Johnell O, McCloskey E (2009) BMD, clinical risk factors and their combination for hip fracture prevention. Osteoporos Int 20:1675–1682PubMedCrossRefGoogle Scholar
  24. 24.
    Kanis JA, Oden A, Johnell O, Johansson H, De Laet C et al (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18:1033–1046PubMedCrossRefGoogle Scholar
  25. 25.
    Seeman E (1999) The structural basis of bone fragility in men. Bone 25:143–147PubMedCrossRefGoogle Scholar
  26. 26.
    Barvencik F, Gebauer M, Beil FT, Vettorazzi E, Mumme M et al (2010) Age- and sex-related changes of humeral head microarchitecture: histomorphometric analysis of 60 human specimens. J Orthop Res 28:18–26PubMedGoogle Scholar
  27. 27.
    McCalden RW, McGeough JA, Court-Brown CM (1997) Age-related changes in the compressive strength of cancellous bone. The relative importance of changes in density and trabecular architecture. J Bone Joint Surg Am 79:421–427PubMedGoogle Scholar
  28. 28.
    Donnelly E, Boskey AL, Baker SP, van der Meulen MC (2010) Effects of tissue age on bone tissue material composition and nanomechanical properties in the rat cortex. J Biomed Mater Res A 92:1048–1056PubMedGoogle Scholar
  29. 29.
    Yeni YN, Zelman EA, Divine GW, Kim DG, Fyhrie DP (2008) Trabecular shear stress amplification and variability in human vertebral cancellous bone: relationship with age, gender, spine level and trabecular architecture. Bone 42:591–596PubMedCrossRefGoogle Scholar
  30. 30.
    Akkus O, Adar F, Schaffler MB (2004) Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34:443–453PubMedCrossRefGoogle Scholar
  31. 31.
    Tommasini SM, Nasser P, Jepsen KJ (2007) Sexual dimorphism affects tibia size and shape but not tissue-level mechanical properties. Bone 40:498–505PubMedCrossRefGoogle Scholar
  32. 32.
    Rodrigues A, Caetano-Lopes J, Nery A, Sousa E, Polido-Pereira J et al (2009) Evaluation of bone mechanical strenght and fracture risk assessment (FRAX) in patients with hip joint replacement surgery. Acta Reumatol Port 34:504–510PubMedGoogle Scholar
  33. 33.
    Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397PubMedCrossRefGoogle Scholar
  34. 34.
    Canhão HFJ, Queiroz MV (2005) Epidemiology of osteoporosis, mechanisms of bone remodeling and bone protective factors. Acta Reum Port 30:225–240Google Scholar
  35. 35.
    Smith CB, Smith DA (1976) Relations between age, mineral density and mechanical properties of human femoral compacta. Acta Orthop Scand 47:496–502PubMedCrossRefGoogle Scholar
  36. 36.
    Hernandez CJ, Keaveny TM (2006) A biomechanical perspective on bone quality. Bone 39:1173–1181PubMedCrossRefGoogle Scholar
  37. 37.
    Fratzl-Zelman N, Roschger P, Gourrier A, Weber M, Misof BM et al (2009) Combination of nanoindentation and quantitative backscattered electron imaging revealed altered bone material properties associated with femoral neck fragility. Calcif Tissue Int 85:335–343PubMedCrossRefGoogle Scholar
  38. 38.
    Li B, Aspden RM (1997) Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res 12:641–651PubMedCrossRefGoogle Scholar
  39. 39.
    Li B, Aspden RM (1997) Material properties of bone from the femoral neck and calcar femorale of patients with osteoporosis or osteoarthritis. Osteoporos Int 7:450–456PubMedCrossRefGoogle Scholar
  40. 40.
    Li B, Aspden RM (1997) Mechanical and material properties of the subchondral bone plate from the femoral head of patients with osteoarthritis or osteoporosis. Ann Rheum Dis 56:247–254PubMedCrossRefGoogle Scholar
  41. 41.
    Sun SS, Ma HL, Liu CL, Huang CH, Cheng CK et al. (2008) Difference in femoral head and neck material properties between osteoarthritis and osteoporosis. Clin Biomech (Bristol, Avon) 23: S39–47Google Scholar
  42. 42.
    Ciarelli TE, Fyhrie DP, Schaffler MB, Goldstein SA (2000) Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls. J Bone Miner Res 15:32–40PubMedCrossRefGoogle Scholar
  43. 43.
    Akhter MP, Iwaniec UT, Haynatzki GR, Fung YK, Cullen DM et al (2003) Effects of nicotine on bone mass and strength in aged female rats. J Orthop Res 21:14–19PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer 2012

Authors and Affiliations

  • Ana Maria Rodrigues
    • 1
    • 2
  • Joana Caetano-Lopes
    • 1
  • Ana Catarina Vale
    • 3
  • Inês Aleixo
    • 1
  • Ana Sofia Pena
    • 1
  • Alexandra Faustino
    • 1
  • Alexandre Sepriano
    • 1
  • Joaquim Polido-Pereira
    • 1
    • 2
  • Elsa Vieira-Sousa
    • 1
    • 2
  • Raquel Lucas
    • 5
    • 6
  • José Carlos Romeu
    • 2
  • Jacinto Monteiro
    • 4
  • Maria Fátima Vaz
    • 3
  • João Eurico Fonseca
    • 1
    • 2
  • Helena Canhão
    • 1
    • 2
  1. 1.Rheumatology Research UnitInstituto de Medicina Molecular, Faculdade de Medicina da Universidade de LisboaLisbonPortugal
  2. 2.Rheumatology and Bone Metabolic Diseases DepartmentHospital de Santa MariaLisbonPortugal
  3. 3.Department of Mechanical EngineeringInstituto Superior TécnicoLisbonPortugal
  4. 4.Ortopaedics DepartmentHospital de Santa MariaLisbonPortugal
  5. 5.Department of Hygiene and EpidemiologyUniversity of Porto Medical SchoolPortoPortugal
  6. 6.Institute of Public Health of University of PortoPortoPortugal

Personalised recommendations