Skip to main content

Advertisement

Log in

Effect of Escherichia coli-produced recombinant human bone morphogenetic protein 2 on the regeneration of canine segmental ulnar defects

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Because bone morphogenetic protein 2 gene transfected Escherichia coli (E-BMP-2) produce recombinant human BMP-2 (rhBMP-2) more efficiently than mammalian cells (Chinese hamster ovary [CHO]-BMP-2), they may be a more cost-effective source of rhBMP-2 for clinical use. However, use of E-BMP-2 for regenerating long bones in large animals has not been reported. In the current study, we evaluated the healing efficacy of E-BMP-2 in a canine model. We created 2.5-cm critical-size segmental ulnar defects in test animals, then implanted E-BMP-2 and 700 mg of artificial bone (beta-tricalcium phosphate; β-TCP) into the wounds. We examined the differential effects of 5 E-BMP-2 treatments (0, 35, 140, 560, and 2240 μg) across 5 experimental groups (control, BMP35, BMP140, BMP560, and BMP2240). Radiography and computed tomography were used to observe the regeneration process. The groups in which higher doses of E-BMP-2 were administered (BMP560 and BMP2240) displayed more pronounced bone regeneration; the regenerated tissues connected to the host bone, and the cross-sectional areas of the regenerated bone were larger than those of the originals. The groups in which lower doses of E-BMP-2 were administered (BMP35 and BMP140) experienced relatively less bone regeneration; furthermore, the regenerated tissues failed to connect to the host bone. In these groups, the cross-sectional areas of the regenerated bone were equal to or smaller than those of the originals. No regeneration was observed in the control group. These findings suggest that, like CHO-BMP-2, E-BMP-2 can be used for the regeneration of large defects in long bones and that its clinical use might decrease the cost of bone regeneration treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cannalls E (1983) The hormonal and local regulation of bone formation. Endocr Rev 4:62–77

    Article  Google Scholar 

  2. Gazdag AR, Lane JM, Glaser D, Forster RA (1995) Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg 3:1–8

    PubMed  Google Scholar 

  3. Younger EM, Chapman MW (1989) Morbidity at bone graft donor sites. J Ortop Trauma 3:192–195

    Article  CAS  Google Scholar 

  4. Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    Article  PubMed  CAS  Google Scholar 

  5. Kenley R, Marden L, Turek T, Jin L, Ron E, Hollinger JO (1994) Osseous regeneration in the rat calvarium using novel delivery systems for recombinant human bone morphogenic protein-2 (rhBMP-2). J Biomed Mater Res 28:1139–1147

    Article  PubMed  CAS  Google Scholar 

  6. Stevenson S, Cunnlngham N, Toth J, Davy D, Raddl AH (1994) The effect of osteogenin (a bone morphogenic protein) on the formation of bone in orthotopic segmental defects in rats. J Bone Jt Surg Am 76:1676–1687

    CAS  Google Scholar 

  7. Sampath TK, Coughlln JE, Whetstone RM, Banach D, Corbett C, Ridge RJ, Ozkaynak E, Oppermann H, Rueger DC (1990) Bovine osteogenic protein is composed of dimmers of OP-1 and BMP-2A, two members of the transforming growth factor-beta superfamily. J Biol Chem 265:13198–13205

    PubMed  CAS  Google Scholar 

  8. Chu TM, Sargent P, Warden SJ, Turner CH, Stewart RL (2006) Preliminary evaluation of a load-bearing BMP-2 carrier for segmental defect regeneration. Biomed Sci Instrum 42:42–47

    PubMed  Google Scholar 

  9. Kokubo S, Fujimoto R, Yokota S, Fukushima S, Nozaki K, Takahashi K, Miyata K (2003) Bone regeneration by recombinant human bone morphogenetic protein-2 and a novel biodegradable carrier in a rabbit ulnar defect model. Biomaterials 24:1643–1651

    Article  PubMed  CAS  Google Scholar 

  10. Itoh T, Mochizuki M, Nishimura R, Matsunaga S, Kadosawa T, Kokubo S, Yokota S, Sasaki N (1998) Repair of ulnar defect by recombinant human bone morphogenetic protein-2 in dogs. J Vet Med Sci 60:451–458

    Article  PubMed  CAS  Google Scholar 

  11. Jones CB, Sabatino CT, Badura JM, Sietsema DL, Marotta JS (2008) Improved healing efficacy in canine ulnar segmental defects with increasing recombinant human bone morphogenetic protein-2/allograft ratios. J Orthop Trauma 22:550–559

    Article  PubMed  Google Scholar 

  12. Seeherman HJ, Azari K, Bidic S, Rogers L, Li XJ, Hollinger JO, Wozney JM (2006) rhBMP-2 delivered in a calcium phosphate cement accelerates bridging of critical-sized defects in rabbit radii. J Bone Jt Surg Am 88:1553–1565

    Article  Google Scholar 

  13. Hoshino M, Egi T, Terai H, Namikawa T, Kato M, Hashimoto Y, Takaoka K (2009) Repair of long intercalated rib defects in dogs using recombinant human bone morphogenetic protein-2 delivered by a synthetic polymer and beta-tricalcium phosphate. J Biomed Mater Res A 90:514–521

    PubMed  Google Scholar 

  14. Schaefer SL, Lu Y, Seeherman H, Li XJ, Lopez MJ, Markel MD (2009) Effect of rhBMP-2 on tibial plateau fractures in a canine model. J Orthop Res 27:466–471

    Article  PubMed  Google Scholar 

  15. Boyce AS, Reveal G, Scheid DK, Kaehr DM, Maar D, Watts M, Stone MB (2009) Canine investigation of rhBMP-2, autogenous bone graft, and rhBMP-2 with autogenous bone graft for the healing of a large segmental tibial defect. J Orthop Trauma 23:685–692

    Article  PubMed  Google Scholar 

  16. Sciadini MF, Johnson KD (2000) Evaluation of recombinant human bone morphogenetic protein-2 as a bone-graft substitute in a canine segmental defect model. J Orthop Res 18:289–302

    Article  PubMed  CAS  Google Scholar 

  17. Govender S, Csimma C, Genant HK, Valentin-Opran A, Amit Y et al (2002) A prospective, controlled, randomized study of four hundred and fifty patients. J Bone Jt Surg Am 84-A:2123–2134

    Google Scholar 

  18. Friedlaender GE, Perry CR, Cole JD, Cook SD, Cierny G, Muschler GF, Zych GA, Calhoun JH, LaForte AJ, Yin S (2001) Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Jt Surg Am 83-A(Suppl 1):151–158

    Google Scholar 

  19. Burkus JK, Heim SE, Gornet MF, Zdeblick TA (2004) The effectiveness of rhBMP-2 in replacing autograft: an integrated analysis of three human spine studies. Orthopedics 27:723–728

    PubMed  Google Scholar 

  20. Ruppert R, Hoffmann E, Sebald W (1996) Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. Eur J Biochem 237:295–302

    Article  PubMed  CAS  Google Scholar 

  21. Kubler NR, Reuther JF, Faller G, Kirchner T, Ruppert R, Sebald W (1998) Inductive properties of recombinant human BMP-2 produced in a bacterial expression system. Int J Oral Maxillofac Surg 27:305–309

    Article  PubMed  CAS  Google Scholar 

  22. Bessho K, Konishi Y, Kaihara S, Fujimura K, Okubo Y, Iizuka T (2000) Bone induction by Escherichia coli-derived recombinant human bone morphogenetic protein-2 compared with Chinese hamster ovary cell-derived recombinant human bone morphogenetic protein-2. Br J Oral Maxillofac Surg 38:645–649

    Article  PubMed  CAS  Google Scholar 

  23. Yano K, Hoshino M, Ohta Y, Manaka T, Naka Y, Imai Y, Sebald W, Takaoka K (2009) Osteoinductive capacity and heat stability of recombinant human bone morphogenetic protein-2 produced by Escherichia coli and dimerized by biochemical processing. J Bone Miner Metab 27:355–363

    Article  PubMed  CAS  Google Scholar 

  24. Vaccaro AR (2002) The role of the osteoconductive scaffold in synthetic bone graft. Orthopedics 25:s571–s578 (Erratum in: Orthopedics 25:1224)

    PubMed  Google Scholar 

  25. Szpalski M, Gunzburg R (2002) Applications of calcium phosphate-based cancellous bone void fillers in trauma surgery. Orthopedics 25:s601–s609

    PubMed  Google Scholar 

  26. Arts JJ, Gardeniers JW, Welten ML, Verdonschot N, Schreurs BW, Buma P (2005) No negative effects of bone impaction grafting with bone and ceramic mixtures. Clin Orthop Relat Res 438:239–247

    Article  PubMed  Google Scholar 

  27. Anker CJ, Holdridge SP, Baird B, Cohen H, Damron TA (2005) Ultraporous beta-tricalcium phosphate is well incorporated in small cavitary defects. Clin Orthop Relat Res 434:251–257

    Article  PubMed  Google Scholar 

  28. Galois L, Mainard D, Delagoutte JP (2002) Beta-tricalcium phosphate ceramic as a bone substitute in orthopaedic surgery. Int Orthop 26:109–115

    Article  PubMed  CAS  Google Scholar 

  29. Dohzono S, Imai Y, Nakamura H, Wakitani S, Takaoka K (2009) Successful spinal fusion by E. coli-derived BMP-2-absorbed porous β-TCP granules. Clin Orthop Relat Res 467:3206–3212

    Article  PubMed  Google Scholar 

  30. Delloye C, Verhelpen M, d’Hemricourt J, Govaerts B, Bourgois R (1992) Morphometric and physical investigations of segmental cortical bone autografts and allografts in canine ulnar defects. Clin Orthop Relat Res 282:273–292

    PubMed  Google Scholar 

  31. Heiple KG, Chase SW, Herndon CH (1963) A comparative study of the healing process following different types of bone transplantation. J Bone Jt Surg Am 45:1593–1616

    CAS  Google Scholar 

  32. Salkeld SL, Patron LP, Barrack RL, Cook SD (2001) The effect of osteogenic protein-1 on the healing of segmental bone defects treated with autograft or allograft bone. J Bone Jt Surg Am 83:803–816

    Google Scholar 

  33. Cann CE (1988) Quantitative CT for determination of bone mineral density: a review. Radiology 166:509–522

    PubMed  CAS  Google Scholar 

  34. Suzuki S, Okumura H, Yamamoto T, Yamamoto I (1988) Bone mineral measurement by CT apparatus with simultaneous use of reference phantom: error factors and clinical evaluation. J Bone Miner Metab 6:164–171

    Article  Google Scholar 

  35. Fischgrund JS, James SB, Chabot MC, Hankin R, Herkowitz HN, Wozney JM, Shirkhoda A (1997) Augmentation of autograft using rhBMP-2 and different carrier media in the canine spinal fusion model. J Spinal Disord 10:467–472

    Article  PubMed  CAS  Google Scholar 

  36. Itoh T, Mochizuki M, Fuda K, Nishimura R, Matsunaga S, Kadosawa T, Sasaki N (1998) Femoral nonunion fracture treated with recombinant human bone morphogenetic protein-2 in a dog. J Vet Med Sci 60:535–538

    Article  PubMed  CAS  Google Scholar 

  37. Milovancev M, Muir P, Manley PA, Seeherman HJ, Schaefer S (2007) Clinical application of recombinant human bone morphogenetic protein-2 in 4 dogs. Vet Surg 36:132–140

    Article  PubMed  Google Scholar 

  38. Boudrieau RJ, Mitchell SL, Seeherman H (2004) Mandibular reconstruction of a partial hemimandibulectomy in a dog with severe malocclusion. Vet Surg 33:119–130

    Article  PubMed  Google Scholar 

  39. Lewis JR, Boudrieau RJ, Reiter AM, Seeherman HJ, Gilley RS (2008) Mandibular reconstruction after gunshot trauma in a dog by use of recombinant human bone morphogenetic protein-2. J Am Vet Med Assoc 233:1598–1604

    Article  PubMed  Google Scholar 

  40. Seeherman HJ, Li XJ, Bouxsein ML, Wozney JM (2010) rhBMP-2 induces transient bone resorption followed by bone formation in a nonhuman primate core-defect model. J Bone Jt Surg Am 92:411–426

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the 2008 Strategic Research Base Development Program for Private Universities from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuji Harada.

About this article

Cite this article

Harada, Y., Itoi, T., Wakitani, S. et al. Effect of Escherichia coli-produced recombinant human bone morphogenetic protein 2 on the regeneration of canine segmental ulnar defects. J Bone Miner Metab 30, 388–399 (2012). https://doi.org/10.1007/s00774-011-0329-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-011-0329-x

Keywords

Navigation